Package 'fmesher'

Title: Triangle Meshes and Related Geometry Tools
Description: Generate planar and spherical triangle meshes, compute finite element calculations for 1- and 2-dimensional flat and curved manifolds with associated basis function spaces, methods for lines and polygons, and transparent handling of coordinate reference systems and coordinate transformation, including 'sf' and 'sp' geometries. The core 'fmesher' library code was originally part of the 'INLA' package, and implements parts of "Triangulations and Applications" by Hjelle and Daehlen (2006) <doi:10.1007/3-540-33261-8>.
Authors: Finn Lindgren [aut, cre, cph] (<https://orcid.org/0000-0002-5833-2011>, Finn Lindgren wrote the main code), Seaton Andy [ctb] (Andy Seaton constributed features to the sf support), Suen Man Ho [ctb] (Man Ho Suen contributed features and code structure design for the integration methods), Fabian E. Bachl [ctb] (Fabian Bachl co-developed precursors of fm_pixels and fm_split_lines in inlabru)
Maintainer: Finn Lindgren <[email protected]>
License: MPL-2.0
Version: 0.2.0.9008
Built: 2024-12-20 08:30:09 UTC
Source: https://github.com/inlabru-org/fmesher

Help Index


Convert a 3D mesh to a 3D rgl triangulation

Description

Extracts a matrix of coordinates of triangles, suitable for passing to rgl::triangles3d().

Usage

## S3 method for class 'fm_mesh_3d'
as.triangles3d(obj, subset = NULL, ...)

Arguments

obj

An fm_mesh_3d object

subset

Character string specifying which triangles to extract. Either "all" (default) or "boundary".

...

Currently unused

Value

A 3-column matrix of coordinates of triangles, suitable for passing to rgl::triangles3d().

Examples

if (requireNamespace("geometry", quietly = TRUE) &&
  requireNamespace("rgl", quietly = TRUE)) {
  (m <- fm_delaunay_3d(matrix(rnorm(30), 10, 3)))
  rgl::open3d()
  rgl::triangles3d(as.triangles3d(m, "boundary"), col = "blue")
}

Convert objects to fmesher objects

Description

Used for conversion from general objects (usually inla.mesh and other legacy INLA specific classes) to fmesher classes.

Usage

fm_as_fm(x, ...)

## S3 method for class 'NULL'
fm_as_fm(x, ...)

## S3 method for class 'fm_mesh_1d'
fm_as_fm(x, ...)

## S3 method for class 'fm_mesh_2d'
fm_as_fm(x, ...)

## S3 method for class 'fm_mesh_3d'
fm_as_fm(x, ...)

## S3 method for class 'fm_tensor'
fm_as_fm(x, ...)

## S3 method for class 'fm_segm'
fm_as_fm(x, ...)

## S3 method for class 'fm_lattice_2d'
fm_as_fm(x, ...)

## S3 method for class 'fm_bbox'
fm_as_fm(x, ...)

## S3 method for class 'crs'
fm_as_fm(x, ...)

## S3 method for class 'CRS'
fm_as_fm(x, ...)

## S3 method for class 'fm_crs'
fm_as_fm(x, ...)

## S3 method for class 'inla.CRS'
fm_as_fm(x, ...)

## S3 method for class 'inla.mesh.1d'
fm_as_fm(x, ...)

## S3 method for class 'inla.mesh'
fm_as_fm(x, ...)

## S3 method for class 'inla.mesh.segment'
fm_as_fm(x, ...)

## S3 method for class 'inla.mesh.lattice'
fm_as_fm(x, ...)

Arguments

x

Object to be converted

...

Arguments forwarded to submethods

Value

An object of some ⁠fm_*⁠ class

See Also

Other object creation and conversion: fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

fm_as_fm(NULL)

Convert objects to fm_lattice_2d

Description

Convert objects to fm_lattice_2d

Usage

fm_as_lattice_2d(...)

fm_as_lattice_2d_list(x, ...)

## S3 method for class 'fm_lattice_2d'
fm_as_lattice_2d(x, ...)

## S3 method for class 'inla.mesh.lattice'
fm_as_lattice_2d(x, ...)

Arguments

...

Arguments passed on to submethods

x

Object to be converted

Value

An fm_lattice_2d or fm_lattice_2d_list object

Functions

  • fm_as_lattice_2d(): Convert an object to fm_lattice_2d.

  • fm_as_lattice_2d_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_fm(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

str(fm_as_lattice_2d_list(list(fm_lattice_2d(), fm_lattice_2d())))

Convert objects to fm_segm

Description

Convert objects to fm_segm

Usage

fm_as_mesh_1d(x, ...)

fm_as_mesh_1d_list(x, ...)

## S3 method for class 'fm_mesh_1d'
fm_as_mesh_1d(x, ...)

## S3 method for class 'inla.mesh.1d'
fm_as_mesh_1d(x, ...)

Arguments

x

Object to be converted

...

Arguments passed on to submethods

Value

An fm_mesh_1d or fm_mesh_1d_list object

Functions

  • fm_as_mesh_1d(): Convert an object to fm_mesh_1d.

  • fm_as_mesh_1d_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

fm_as_mesh_1d_list(list(fm_mesh_1d(1:4)))

Convert objects to fm_mesh_2d

Description

Convert objects to fm_mesh_2d

Usage

fm_as_mesh_2d(x, ...)

fm_as_mesh_2d_list(x, ...)

## S3 method for class 'fm_mesh_2d'
fm_as_mesh_2d(x, ...)

## S3 method for class 'inla.mesh'
fm_as_mesh_2d(x, ...)

## S3 method for class 'fm_mesh_3d'
fm_as_mesh_2d(x, ...)

## S3 method for class 'sfg'
fm_as_mesh_2d(x, ...)

## S3 method for class 'sfc_MULTIPOLYGON'
fm_as_mesh_2d(x, ...)

## S3 method for class 'sfc_POLYGON'
fm_as_mesh_2d(x, ...)

## S3 method for class 'sf'
fm_as_mesh_2d(x, ...)

Arguments

x

Object to be converted

...

Arguments passed on to submethods

Value

An fm_mesh_2d or fm_mesh_2d_list object

Methods (by class)

  • fm_as_mesh_2d(fm_mesh_3d): Construct a 2D mesh of the boundary of a 3D mesh

Functions

  • fm_as_mesh_2d(): Convert an object to fm_mesh_2d.

  • fm_as_mesh_2d_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

fm_as_mesh_2d_list(list(fm_mesh_2d(cbind(2, 1))))

Convert objects to fm_mesh_3d

Description

Convert objects to fm_mesh_3d

Usage

fm_as_mesh_3d(x, ...)

fm_as_mesh_3d_list(x, ...)

## S3 method for class 'fm_mesh_3d'
fm_as_mesh_3d(x, ...)

Arguments

x

Object to be converted

...

Arguments passed on to submethods

Value

An fm_mesh_3d or fm_mesh_3d_list object

Functions

  • fm_as_mesh_3d(): Convert an object to fm_mesh_3d.

  • fm_as_mesh_3d_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()


Convert objects to fm_segm

Description

Convert objects to fm_segm

Usage

fm_as_segm(x, ...)

fm_as_segm_list(x, ...)

## S3 method for class 'fm_segm'
fm_as_segm(x, ...)

## S3 method for class 'inla.mesh.segment'
fm_as_segm(x, ...)

## S3 method for class 'sfg'
fm_as_segm(x, ...)

## S3 method for class 'sfc_POINT'
fm_as_segm(x, reverse = FALSE, grp = NULL, is.bnd = TRUE, ...)

## S3 method for class 'sfc_LINESTRING'
fm_as_segm(x, join = TRUE, grp = NULL, reverse = FALSE, ...)

## S3 method for class 'sfc_MULTILINESTRING'
fm_as_segm(x, join = TRUE, grp = NULL, reverse = FALSE, ...)

## S3 method for class 'sfc_POLYGON'
fm_as_segm(x, join = TRUE, grp = NULL, ...)

## S3 method for class 'sfc_MULTIPOLYGON'
fm_as_segm(x, join = TRUE, grp = NULL, ...)

## S3 method for class 'sfc_GEOMETRY'
fm_as_segm(x, grp = NULL, join = TRUE, ...)

## S3 method for class 'sf'
fm_as_segm(x, ...)

## S3 method for class 'matrix'
fm_as_segm(
  x,
  reverse = FALSE,
  grp = NULL,
  is.bnd = FALSE,
  crs = NULL,
  closed = FALSE,
  ...
)

## S3 method for class 'SpatialPoints'
fm_as_segm(x, reverse = FALSE, grp = NULL, is.bnd = TRUE, closed = FALSE, ...)

## S3 method for class 'SpatialPointsDataFrame'
fm_as_segm(x, ...)

## S3 method for class 'Line'
fm_as_segm(x, reverse = FALSE, grp = NULL, crs = NULL, ...)

## S3 method for class 'Lines'
fm_as_segm(x, join = TRUE, grp = NULL, crs = NULL, ...)

## S3 method for class 'SpatialLines'
fm_as_segm(x, join = TRUE, grp = NULL, ...)

## S3 method for class 'SpatialLinesDataFrame'
fm_as_segm(x, ...)

## S3 method for class 'SpatialPolygons'
fm_as_segm(x, join = TRUE, grp = NULL, ...)

## S3 method for class 'SpatialPolygonsDataFrame'
fm_as_segm(x, ...)

## S3 method for class 'Polygons'
fm_as_segm(x, join = TRUE, crs = NULL, grp = NULL, ...)

## S3 method for class 'Polygon'
fm_as_segm(x, crs = NULL, ...)

Arguments

x

Object to be converted.

...

Arguments passed on to submethods

reverse

logical; When TRUE, reverse the order of the input points. Default FALSE

grp

if non-null, should be an integer vector of grouping labels for one for each segment. Default NULL

is.bnd

logical; if TRUE, set the boundary flag for the segments. Default TRUE

join

logical; if TRUE, join input segments with common vertices. Default TRUE

crs

A crs object

closed

logical; whether to treat a point sequence as a closed polygon. Default: FALSE

Value

An fm_segm or fm_segm_list object

Functions

  • fm_as_segm(): Convert an object to fm_segm.

  • fm_as_segm_list(): Convert each element, making a fm_segm_list object

See Also

c.fm_segm(), c.fm_segm_list(), [.fm_segm_list()

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

fm_as_segm_list(list(
  fm_segm(fmexample$mesh),
  fm_segm(fmexample$mesh, boundary = FALSE)
))

(segm <- fm_segm(fmexample$mesh, boundary = FALSE))
(segm_sfc <- fm_as_sfc(segm))
(fm_as_segm(segm_sfc))

Conversion methods from mesh related objects to sfc

Description

Conversion methods from mesh related objects to sfc

Usage

fm_as_sfc(x, ...)

## S3 method for class 'fm_mesh_2d'
fm_as_sfc(x, ..., format = NULL, multi = FALSE)

## S3 method for class 'fm_segm'
fm_as_sfc(x, ..., multi = FALSE)

## S3 method for class 'sfc'
fm_as_sfc(x, ...)

## S3 method for class 'sf'
fm_as_sfc(x, ...)

Arguments

x

An object to be coerced/transformed/converted into another class

...

Arguments passed on to other methods

format

One of "mesh", "int", "bnd", or "loc". Default "mesh".

multi

logical; if TRUE, attempt to a sfc_MULTIPOLYGON/LINESTRING/POINT, otherwise a set of sfc_POLYGON/LINESTRING/POINT. Default FALSE

Value

  • fm_as_sfc: An sfc_MULTIPOLYGON/LINESTRING/POINT or sfc_POLYGON/LINESTRING/POINT object

Methods (by class)

  • fm_as_sfc(fm_mesh_2d): [Experimental]

  • fm_as_sfc(fm_segm): [Experimental]

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

fm_as_sfc(fmexample$mesh)
fm_as_sfc(fmexample$mesh, multi = TRUE)
fm_as_sfc(fmexample$mesh, format = "loc")

# Boundary edge conversion currently only supports (multi)linestring output,
# and does not convert to polygons.
suppressWarnings(
  fm_as_sfc(fmexample$mesh, format = "bnd")
)

Convert objects to fm_tensor

Description

Convert objects to fm_tensor

Usage

fm_as_tensor(x, ...)

fm_as_tensor_list(x, ...)

## S3 method for class 'fm_tensor'
fm_as_tensor(x, ...)

Arguments

x

Object to be converted

...

Arguments passed on to submethods

Value

An fm_tensor object

Functions

  • fm_as_tensor(): Convert an object to fm_tensor.

  • fm_as_tensor_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

fm_as_tensor_list(list(fm_tensor(list())))

Compute barycentric coordinates

Description

Identify knot intervals or triangles and compute barycentric coordinates

Usage

fm_bary(...)

## S3 method for class 'fm_bary'
fm_bary(bary, ..., extra_class = NULL)

## S3 method for class 'list'
fm_bary(bary, ..., extra_class = NULL)

## S3 method for class 'tbl_df'
fm_bary(bary, ..., extra_class = NULL)

## S3 method for class 'fm_mesh_1d'
fm_bary(mesh, loc, method = c("linear", "nearest"), restricted = FALSE, ...)

## S3 method for class 'fm_mesh_2d'
fm_bary(mesh, loc, crs = NULL, ..., max_batch_size = NULL)

## S3 method for class 'fm_mesh_3d'
fm_bary(mesh, loc, ..., max_batch_size = NULL)

## S3 method for class 'fm_lattice_2d'
fm_bary(mesh, loc, crs = NULL, ...)

Arguments

...

Arguments forwarded to sub-methods.

bary

An fm_bary object, or an object that can be converted to fm_bary.

extra_class

character; If non-NULL and not already in the class vector of bary, add it to the front of the class vector.

mesh

fm_mesh_1d or fm_mesh_2d object

loc

Points for which to identify the containing interval/triangle, and corresponding barycentric coordinates. May be a vector (for 1d) or a matrix of raw coordinates, sf, or sp point information (for 2d).

method

character; method for defining the barycentric coordinates, "linear" (default) or "nearest"

restricted

logical, used for method="linear". If FALSE (default), points outside the mesh interval will be given barycentric weights less than 0 and greater than 1, according to linear extrapolation. If TRUE, the barycentric weights are clamped to the (0, 1) interval.

crs

Optional crs information for loc

max_batch_size

integer; maximum number of points to process in a single batch. This speeds up calculations by avoiding repeated large internal memory allocations and data copies. The default, NULL, uses max_batch_size = 2e5L, chosen based on empirical time measurements to give an approximately optimal runtime.

Value

A fm_bary object, a tibble with columns index; either

  • vector of triangle indices (triangle meshes),

  • vector of knot indices (1D meshes, either for edges or individual knots), or

  • vector of lower left box indices (2D lattices),

and where, a matrix of barycentric coordinates.

Methods (by class)

  • fm_bary(fm_bary): Returns the bary input unchanged

  • fm_bary(list): Converts a list bary to fm_bary. In the list elements are unnamed, the names index and where are assumed.

  • fm_bary(tbl_df): Converts a tibble::tibble() bary to fm_bary

  • fm_bary(fm_mesh_1d): Return an fm_bary object with elements index (edge index vector pointing to the first knot of each edge) and where (barycentric coordinates, 2-column matrices). Use fm_bary_simplex() to obtain the corresponding endpoint knot indices.

    For method = "nearest", index contains the index of the nearest mesh knot, and where is a single-column all-ones matrix.

  • fm_bary(fm_mesh_2d): An fm_bary object with columns index (vector of triangle indices) and where (3-column matrix of barycentric coordinates). Points that were not found give NA entries in index and where.

  • fm_bary(fm_mesh_3d): An fm_bary object with columns index (vector of triangle indices) and where (4-column matrix of barycentric coordinates). Points that were not found give NA entries in index and where.

  • fm_bary(fm_lattice_2d): An fm_bary object with columns index (vector of lattice cell indices) and where (4-column matrix of barycentric coordinates). Points that are outside the lattice are given NA entries in index and where.

See Also

fm_bary_simplex(), fm_bary_loc()

Examples

bary <- fm_bary(fm_mesh_1d(1:4), seq(0, 5, by = 0.5))
bary
str(fm_bary(fmexample$mesh, fmexample$loc_sf))
m <- fm_mesh_3d(
  rbind(
    c(1, 0, 0),
    c(0, 1, 0),
    c(0, 0, 1),
    c(0, 0, 0)
  ),
  matrix(c(1, 2, 3, 4), 1, 4)
)
b <- fm_bary(m, matrix(c(1, 1, 1) / 4, 1, 3))
str(fm_bary(fmexample$mesh, fmexample$loc_sf))

Extract Euclidean Sgeometry from Barycentric coordinates

Description

Extract the Euclidean coordinates for location identified by an fm_bary object. This acts as the inverse of fm_bary().

Usage

fm_bary_loc(mesh, bary = NULL, ..., format = NULL)

## S3 method for class 'fm_mesh_2d'
fm_bary_loc(mesh, bary = NULL, ..., format = NULL)

## S3 method for class 'fm_mesh_3d'
fm_bary_loc(mesh, bary = NULL, ..., format = NULL)

## S3 method for class 'fm_mesh_1d'
fm_bary_loc(mesh, bary = NULL, ..., format = NULL)

## S3 method for class 'fm_lattice_2d'
fm_bary_loc(mesh, bary = NULL, ..., format = NULL)

Arguments

mesh

A mesh object, e.g. fm_mesh_2d or fm_mesh_1d.

bary

An fm_bary object. If NULL, return the mesh nodes is the mesh class supports it, otherwise gives an error.

...

Further arguments potentially used by sub-methods.

format

Optional format for the output. If NULL, the output format is determined by the default for the mesh object.

Value

Output format depends on the mesh class.

Methods (by class)

  • fm_bary_loc(fm_mesh_2d): Extract points on a triangle mesh. Implemented formats are "matrix" (default) and "sf".

  • fm_bary_loc(fm_mesh_3d): Extract points on a tetrahedron mesh. Implemented format is "matrix" (default).

  • fm_bary_loc(fm_mesh_1d): Extract points on a 1D mesh. Implemented formats are "numeric" (default).

  • fm_bary_loc(fm_lattice_2d): Extract points on a 2D lattice. Implemented formats are "matrix" (default) and "sf".

See Also

fm_bary(), fm_bary_simplex()

Examples

head(fm_bary_loc(fmexample$mesh))
bary <- fm_bary(fmexample$mesh, fmexample$loc_sf)
fm_bary_loc(fmexample$mesh, bary, format = "matrix")
fm_bary_loc(fmexample$mesh, bary, format = "sf")
mesh1 <- fm_mesh_1d(1:4)
fm_bary_loc(mesh1)
(bary1 <- fm_bary(mesh1, seq(0, 5, by = 0.5)))
fm_bary_loc(mesh1, bary1)
(bary1 <- fm_bary(mesh1, seq(0, 5, by = 0.5), restricted = TRUE))
fm_bary_loc(mesh1, bary1)
fm_basis(mesh1, bary1)
(bary1 <- fm_bary(mesh1, bary1, method = "nearest"))
fm_bary_loc(mesh1, bary1)
fm_basis(mesh1, bary1)
(bary1 <- fm_bary(mesh1, bary1, method = "linear"))
fm_bary_loc(mesh1, bary1)
fm_basis(mesh1, bary1)
m <- fm_lattice_2d(x = 1:3, y = 1:4)
head(fm_bary_loc(m))
(bary <- fm_bary(m, cbind(1.5, 3.2)))
fm_bary_loc(m, bary, format = "matrix")
fm_bary_loc(m, bary, format = "sf")

Extract Simplex information for Barycentric coordinates

Description

Extract the simplex vertex information for a combination of a mesh and fm_bary coordinates.

Usage

fm_bary_simplex(mesh, bary = NULL, ...)

## S3 method for class 'fm_mesh_2d'
fm_bary_simplex(mesh, bary = NULL, ...)

## S3 method for class 'fm_mesh_3d'
fm_bary_simplex(mesh, bary = NULL, ...)

## S3 method for class 'fm_mesh_1d'
fm_bary_simplex(mesh, bary = NULL, ...)

## S3 method for class 'fm_lattice_2d'
fm_bary_simplex(mesh, bary = NULL, ...)

Arguments

mesh

A mesh object, e.g. fm_mesh_2d or fm_mesh_1d.

bary

An fm_bary object. If NULL, return the full simplex information for the mesh.

...

Further arguments potentially used by sub-methods.

Value

A matrix of vertex indices, one row per point in bary.

Methods (by class)

  • fm_bary_simplex(fm_mesh_2d): Extract the triangle vertex indices for a 2D mesh

  • fm_bary_simplex(fm_mesh_3d): Extract the tetrahedron vertex indices for a 3D mesh

  • fm_bary_simplex(fm_mesh_1d): Extract the edge vertex indices for a 1D mesh

  • fm_bary_simplex(fm_lattice_2d): Extract the cell vertex indices for a 2D lattice

See Also

fm_bary(), fm_bary_loc()

Examples

bary <- fm_bary(fmexample$mesh, fmexample$loc_sf)
fm_bary_simplex(fmexample$mesh, bary)
mesh1 <- fm_mesh_1d(1:4)
(bary1 <- fm_bary(mesh1, seq(0, 5, by = 0.5)))
(bary1 <- fm_bary(mesh1, seq(0, 5, by = 0.5), restricted = TRUE))
fm_bary_simplex(mesh1, bary1)
m <- fm_lattice_2d(x = 1:3, y = 1:4)
bary <- fm_bary(m, cbind(1.5, 3.2))
fm_bary_simplex(m, bary)

Compute mapping matrix between mesh function space and points

Description

Computes the basis mapping matrix between a function space on a mesh, and locations.

Usage

fm_basis(x, ..., full = FALSE)

## Default S3 method:
fm_basis(x, ..., full = FALSE)

## S3 method for class 'fm_mesh_1d'
fm_basis(x, loc, weights = NULL, derivatives = NULL, ..., full = FALSE)

## S3 method for class 'fm_mesh_2d'
fm_basis(x, loc, weights = NULL, derivatives = NULL, ..., full = FALSE)

## S3 method for class 'fm_mesh_3d'
fm_basis(x, loc, weights = NULL, ..., full = FALSE)

## S3 method for class 'fm_lattice_2d'
fm_basis(x, loc, weights = NULL, ..., full = FALSE)

## S3 method for class 'fm_tensor'
fm_basis(x, loc, weights = NULL, ..., full = FALSE)

## S3 method for class 'matrix'
fm_basis(x, ok = NULL, weights = NULL, ..., full = FALSE)

## S3 method for class 'Matrix'
fm_basis(x, ok = NULL, weights = NULL, ..., full = FALSE)

## S3 method for class 'list'
fm_basis(x, weights = NULL, ..., full = FALSE)

## S3 method for class 'fm_basis'
fm_basis(x, ..., full = FALSE)

## S3 method for class 'fm_evaluator'
fm_basis(x, ..., full = FALSE)

Arguments

x

An function space object, or other supported object (matrix, Matrix, list)

...

Passed on to submethods

full

logical; if TRUE, return a fm_basis object, containing at least a projection matrix A and logical vector ok indicating which evaluations are valid. If FALSE, return only the projection matrix A. Default is FALSE.

loc

A location/value information object (numeric, matrix, sf, fm_bary, etc, depending on the class of x)

weights

Optional weight vector to apply (from the left, one weight for each row of the basis matrix)

derivatives

If non-NULL and logical, include derivative matrices in the output. Forces full = TRUE.

ok

numerical of length NROW(x), indicating which rows of x are valid/successful basis evaluations. If NULL, inferred as rep(TRUE, NROW(x)).

Value

A sparseMatrix object (if full = FALSE), or a fm_basis object (if full = TRUE or isTRUE(derivatives)). The fm_basis object contains at least the projection matrix A and logical vector ok; If x_j denotes the latent basis coefficient for basis function j, the field is defined as ⁠u(loc_i)=sum_j A_ij x_j⁠ for all i where ok[i] is TRUE, and u(loc_i)=0.0 where ok[i] is FALSE.

Methods (by class)

  • fm_basis(fm_mesh_1d): If derivatives=TRUE, the fm_basis object contains additional derivative weight matrices, d1A and d2A, ⁠du/dx(loc_i)=sum_j dx_ij w_i⁠.

  • fm_basis(fm_mesh_2d): If derivatives=TRUE, additional derivative weight matrices are included in the full=TRUE output: Derivative weight matrices dx, dy, dz; ⁠du/dx(loc_i)=sum_j dx_ij w_i⁠, etc.

  • fm_basis(fm_mesh_3d): fm_mesh_3d basis functions.

  • fm_basis(fm_lattice_2d): fm_lattice_2d bilinear basis functions.

  • fm_basis(fm_tensor): Evaluates a basis matrix for a fm_tensor function space.

  • fm_basis(matrix): Creates a new fm_basis object with elements A and ok, from a pre-evaluated basis matrix, including optional additional elements in the ... arguments. If a ok is NULL, it is inferred as rep(TRUE, NROW(x)), indicating that all rows correspond to successful basis evaluations. If full = FALSE, returns the matrix unchanged.

  • fm_basis(Matrix): Creates a new fm_basis object with elements A and ok, from a pre-evaluated basis matrix, including optional additional elements in the ... arguments. If a ok is NULL, it is inferred as rep(TRUE, NROW(x)), indicating that all rows correspond to successful basis evaluations. If full = FALSE, returns the matrix unchanged.

  • fm_basis(list): Creates a new fm_basis object from a plain list containing at least an element A. If an ok element is missing, it is inferred as rep(TRUE, NROW(x$A)). If full = FALSE, extracts the A matrix.

  • fm_basis(fm_basis): If full is TRUE, returns x unchanged, otherwise returns the A matrix contained in x.

  • fm_basis(fm_evaluator): Extract fm_basis information from an fm_evaluator object. If full = FALSE, returns the A matrix contained in the fm_basis object.

See Also

fm_raw_basis()

Examples

# Compute basis mapping matrix
dim(fm_basis(fmexample$mesh, fmexample$loc))
print(fm_basis(fmexample$mesh, fmexample$loc, full = TRUE))

# From precomputed `fm_bary` information:
bary <- fm_bary(fmexample$mesh, fmexample$loc)
print(fm_basis(fmexample$mesh, bary, full = TRUE))

Bounding box class

Description

Simple class for handling bounding box information

Usage

fm_bbox(...)

## S3 method for class 'list'
fm_bbox(x, ...)

## S3 method for class 'NULL'
fm_bbox(...)

## S3 method for class 'numeric'
fm_bbox(x, ...)

## S3 method for class 'matrix'
fm_bbox(x, ...)

## S3 method for class 'Matrix'
fm_bbox(x, ...)

## S3 method for class 'fm_bbox'
fm_bbox(x, ...)

## S3 method for class 'fm_mesh_1d'
fm_bbox(x, ...)

## S3 method for class 'fm_mesh_2d'
fm_bbox(x, ...)

## S3 method for class 'fm_mesh_3d'
fm_bbox(x, ...)

## S3 method for class 'fm_segm'
fm_bbox(x, ...)

## S3 method for class 'fm_lattice_2d'
fm_bbox(x, ...)

## S3 method for class 'fm_tensor'
fm_bbox(x, ...)

## S3 method for class 'sf'
fm_bbox(x, ...)

## S3 method for class 'sfg'
fm_bbox(x, ...)

## S3 method for class 'sfc'
fm_bbox(x, ...)

## S3 method for class 'bbox'
fm_bbox(x, ...)

fm_as_bbox(x, ...)

## S3 method for class 'fm_bbox'
x[i]

## S3 method for class 'fm_bbox'
c(..., .join = FALSE)

Arguments

...

Passed on to sub-methods

x

fm_bbox object from which to extract element(s)

i

indices specifying elements to extract

.join

logical; if TRUE, concatenate the bounding boxes into a single multi-dimensional bounding box. Default is FALSE.

Value

For c.fm_bbox(), a fm_bbox_list object if join = FALSE (the default) or an fm_bbox object if join = TRUE.

Methods (by class)

  • fm_bbox(list): Construct a bounding box from precomputed interval information, stored as a list of 2-vector ranges, list(xlim, ylim, ...).

Methods (by generic)

  • [: Extract sub-list

  • c(fm_bbox): The ... arguments should be fm_bbox objects, or coercible with fm_as_bbox(list(...)).

Examples

fm_bbox(matrix(1:6, 3, 2))
m <- c(A = fm_bbox(cbind(1, 2)), B = fm_bbox(cbind(3, 4)))
str(m)
str(m[2])

Blockwise aggregation matrices

Description

Creates an aggregation matrix for blockwise aggregation, with optional weighting.

Usage

fm_block(
  block = NULL,
  weights = NULL,
  log_weights = NULL,
  rescale = FALSE,
  n_block = NULL
)

fm_block_eval(
  block = NULL,
  weights = NULL,
  log_weights = NULL,
  rescale = FALSE,
  n_block = NULL,
  values = NULL
)

fm_block_logsumexp_eval(
  block = NULL,
  weights = NULL,
  log_weights = NULL,
  rescale = FALSE,
  n_block = NULL,
  values = NULL,
  log = TRUE
)

fm_block_weights(
  block = NULL,
  weights = NULL,
  log_weights = NULL,
  rescale = FALSE,
  n_block = NULL
)

fm_block_log_weights(
  block = NULL,
  weights = NULL,
  log_weights = NULL,
  rescale = FALSE,
  n_block = NULL
)

fm_block_log_shift(block = NULL, log_weights = NULL, n_block = NULL)

fm_block_prep(
  block = NULL,
  log_weights = NULL,
  weights = NULL,
  n_block = NULL,
  values = NULL,
  n_values = NULL,
  force_log = FALSE
)

Arguments

block

integer vector; block information. If NULL, rep(1L, block_len) is used, where block_len is determined by ⁠length(log_weights)))⁠ or ⁠length(weights)))⁠. A single scalar is also repeated to a vector of corresponding length to the weights.

weights

Optional weight vector

log_weights

Optional log(weights) vector. Overrides weights when non-NULL.

rescale

logical; If TRUE, normalise the weights by sum(weights) or sum(exp(log_weights)) within each block. Default: FALSE

n_block

integer; The number of conceptual blocks. Only needs to be specified if it's larger than max(block), or to keep the output of consistent size for different inputs.

values

Vector to be blockwise aggregated

log

If TRUE (default), return log-sum-exp. If FALSE, return sum-exp.

n_values

When supplied, used instead of length(values) to determine the value vector input length.

force_log

When FALSE (default), passes either weights and log_weights on, if provided, with log_weights taking precedence. If TRUE, forces the computation of log_weights, whether given in the input or not.

Value

A (sparse) matrix

Functions

  • fm_block(): A (sparse) matrix of size n_block times length(block).

  • fm_block_eval(): Evaluate aggregation. More efficient alternative to to as.vector(fm_block(...) %*% values).

  • fm_block_logsumexp_eval(): Evaluate log-sum-exp aggregation. More efficient and numerically stable alternative to to log(as.vector(fm_block(...) %*% exp(values))).

  • fm_block_weights(): Computes (optionally) blockwise renormalised weights

  • fm_block_log_weights(): Computes (optionally) blockwise renormalised log-weights

  • fm_block_log_shift(): Computes shifts for stable blocked log-sum-exp. To compute log(i;blocki=kexp(vi)wi)\log(\sum_{i; \textrm{block}_i=k} \exp(v_i) w_i) for each block k, first compute combined values and weights, and a shift:

    w_values <- values + fm_block_log_weights(block, log_weights = log_weights)
    shift <- fm_block_log_shift(block, log_weights = w_values)
    

    Then aggregate the values within each block:

    agg <- aggregate(exp(w_values - shift[block]),
                     by = list(block = block),
                     \(x) log(sum(x)))
    agg$x <- agg$x + shift[agg$block]
    

    The implementation uses a faster method:

    as.vector(
      Matrix::sparseMatrix(
        i = block,
        j = rep(1L, length(block)),
        x = exp(w_values - shift[block]),
        dims = c(n_block, 1))
    ) + shift
    
  • fm_block_prep(): Helper function for preparing block, weights, and log_weights, n_block inputs.

Examples

block <- rep(1:2, 3:2)
fm_block(block)
fm_block(block, rescale = TRUE)
fm_block(block, log_weights = -2:2, rescale = TRUE)
fm_block_eval(
  block,
  weights = 1:5,
  rescale = TRUE,
  values = 11:15
)
fm_block_logsumexp_eval(
  block,
  weights = 1:5,
  rescale = TRUE,
  values = log(11:15),
  log = FALSE
)

Extract triangle centroids from an fm_mesh_2d

Description

Computes the centroids of the triangles of an fm_mesh_2d() object.

Usage

fm_centroids(x, format = NULL)

Arguments

x

An fm_mesh_2d object.

format

character; "sf", "df", "sp"

Value

An sf, data.frame, or SpatialPointsDataFrame object, with the vertex coordinates, and a .triangle column with the triangle indices.

Author(s)

Finn Lindgren [email protected]

See Also

fm_vertices()

Examples

if (require("ggplot2", quietly = TRUE)) {
  vrt <- fm_centroids(fmexample$mesh, format = "sf")
  ggplot() +
    geom_sf(data = fm_as_sfc(fmexample$mesh)) +
    geom_sf(data = vrt, color = "red")
}

Check which mesh triangles are inside a polygon

Description

Wrapper for the sf::st_contains() (previously sp::over()) method to find triangle centroids or vertices inside sf or sp polygon objects

Usage

fm_contains(x, y, ...)

## S3 method for class 'Spatial'
fm_contains(x, y, ...)

## S3 method for class 'sf'
fm_contains(x, y, ...)

## S3 method for class 'sfc'
fm_contains(x, y, ..., type = c("centroid", "vertex"))

Arguments

x

geometry (typically an sf or sp::SpatialPolygons object) for the queries

y

an fm_mesh_2d() object

...

Passed on to other methods

type

the query type; either 'centroid' (default, for triangle centroids), or 'vertex' (for mesh vertices)

Value

List of vectors of triangle indices (when type is 'centroid') or vertex indices (when type is 'vertex'). The list has one entry per row of the sf object. Use unlist(fm_contains(...)) if the combined union is needed.

Author(s)

Haakon Bakka, [email protected], and Finn Lindgren [email protected]

Examples

if (TRUE &&
  fm_safe_sp()) {
  # Create a polygon and a mesh
  obj <- sp::SpatialPolygons(
    list(sp::Polygons(
      list(sp::Polygon(rbind(
        c(0, 0),
        c(50, 0),
        c(50, 50),
        c(0, 50)
      ))),
      ID = 1
    )),
    proj4string = fm_CRS("longlat_globe")
  )
  mesh <- fm_rcdt_2d_inla(globe = 2, crs = fm_crs("sphere"))

  ## 3 vertices found in the polygon
  fm_contains(obj, mesh, type = "vertex")

  ## 3 triangles found in the polygon
  fm_contains(obj, mesh)

  ## Multiple transformations can lead to slightly different results
  ## due to edge cases:
  ## 4 triangles found in the polygon
  fm_contains(
    obj,
    fm_transform(mesh, crs = fm_crs("mollweide_norm"))
  )
}

Obtain coordinate reference system object

Description

Obtain an sf::crs or fm_crs object from a spatial object, or convert crs information to construct a new sf::crs object.

Usage

fm_crs(x, oblique = NULL, ..., crsonly = deprecated())

fm_crs_oblique(x)

## S3 method for class 'fm_crs'
st_crs(x, ...)

## S3 method for class 'fm_crs'
x$name

## Default S3 method:
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'crs'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'fm_crs'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'fm_CRS'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'character'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'Spatial'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'SpatVector'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'SpatRaster'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'sf'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'sfc'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'sfg'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'fm_mesh_2d'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'fm_mesh_1d'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'fm_mesh_3d'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'fm_lattice_2d'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'fm_segm'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'fm_list'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'matrix'
fm_crs(x, oblique = NULL, ...)

## S3 method for class 'fm_list'
fm_CRS(x, oblique = NULL, ...)

fm_wkt_predef()

## S3 method for class 'inla.CRS'
fm_crs(x, oblique = NULL, ...)

Arguments

x

Object to convert to crs or to extract crs information from. If character, a string suitable for sf::st_crs(x), or the name of a predefined wkt string from “names(fm_wkt_predef())'.

oblique

Numeric vector of length at most 4 of rotation angles (in degrees) for an oblique projection, all values defaulting to zero. The values indicate (longitude, latitude, orientation, orbit), as explained in the Details section below. When oblique is non-NULL, used to override the obliqueness parameters of a fm_crs object. When NA, remove obliqueness from the object, resulting in a return class of sf::st_crs(). When NULL, pass though any oblique information in the object, returning an fm_crs() object if needed.

...

Additional parameters. Not currently in use.

crsonly

[Deprecated] logical; if TRUE, remove oblique information from fm_crs objects and return a plain crs object instead. For crsonly = TRUE, use oblique = NA instead. For crsonly = FALSE, use default, NULL, or non-NA oblique.

name

element name

Details

The first two elements of the oblique vector are the (longitude, latitude) coordinates for the oblique centre point. The third value (orientation) is a counter-clockwise rotation angle for an observer looking at the centre point from outside the sphere. The fourth value is the quasi-longitude (orbit angle) for a rotation along the oblique observers equator.

Simple oblique: oblique=c(0, 45)

Polar: oblique=c(0, 90)

Quasi-transversal: oblique=c(0, 0, 90)

Satellite orbit viewpoint: oblique=c(lon0-time*v1, 0, orbitangle, orbit0+time*v2), where lon0 is the longitude at which a satellite orbit crosses the equator at time=0, when the satellite is at an angle orbit0 further along in its orbit. The orbital angle relative to the equatorial plane is orbitangle, and v1 and v2 are the angular velocities of the planet and the satellite, respectively. Note that "forward" from the satellite's point of view is "to the right" in the projection.

When oblique[2] or oblique[3] are non-zero, the resulting projection is only correct for perfect spheres.

Value

Either an sf::crs object or an fm_crs object, depending on if the coordinate reference system described by the parameters can be expressed with a pure crs object or not.

A crs object (sf::st_crs()) or a fm_crs object. An S3 fm_crs object is a list with elements crs and oblique.

fm_wkt_predef returns a WKT2 string defining a projection

Methods (by class)

  • fm_crs(fm_list): returns a list of 'crs' objects, one for each list element

Methods (by generic)

  • st_crs(fm_crs): st_crs(x, ...) is equivalent to ⁠fm_crs(x, ... oblique = NA)⁠ when x is a fm_crs object.

  • $: For a fm_crs object x, x$name calls the accessor method for the crs object inside it. If name is "crs", the internal crs object itself is returned. If name is "oblique", the internal oblique angle parameter vector is returned.

Functions

  • fm_crs_oblique(): Return NA for object with no oblique information, and otherwise a length 4 numeric vector.

  • fm_CRS(fm_list): returns a list of 'CRS' objects, one for each list element

Author(s)

Finn Lindgren [email protected]

See Also

sf::st_crs(), fm_crs_wkt

fm_crs_is_null

fm_crs<-(), fm_crs_oblique<-()

Examples

crs1 <- fm_crs("longlat_globe")
crs2 <- fm_crs("lambert_globe")
crs3 <- fm_crs("mollweide_norm")
crs4 <- fm_crs("hammer_globe")
crs5 <- fm_crs("sphere")
crs6 <- fm_crs("globe")
names(fm_wkt_predef())

Create a coordinate reference system object

Description

Creates either a CRS object or an inla.CRS object, describing a coordinate reference system

Usage

fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'fm_CRS'
is.na(x)

## S3 method for class 'crs'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'fm_crs'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'Spatial'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'fm_CRS'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'SpatVector'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'SpatRaster'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'sf'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'sfc'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'sfg'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'fm_mesh_2d'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'fm_lattice'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'fm_segm'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'matrix'
fm_CRS(x, oblique = NULL, ...)

## S3 method for class 'CRS'
fm_CRS(x, oblique = NULL, ...)

## Default S3 method:
fm_CRS(
  x,
  oblique = NULL,
  projargs = NULL,
  doCheckCRSArgs = NULL,
  args = NULL,
  SRS_string = NULL,
  ...
)

## S3 method for class 'inla.CRS'
is.na(x)

## S3 method for class 'inla.CRS'
fm_CRS(x, oblique = NULL, ...)

Arguments

x

Object to convert to CRS or to extract CRS information from.

oblique

Vector of length at most 4 of rotation angles (in degrees) for an oblique projection, all values defaulting to zero. The values indicate (longitude, latitude, orientation, orbit), as explained in the Details section for fm_crs().

...

Additional parameters, passed on to sub-methods.

projargs

Either 1) a projection argument string suitable as input to sp::CRS, or 2) an existing CRS object, or 3) a shortcut reference string to a predefined projection; run names(fm_wkt_predef()) for valid predefined projections. (projargs is a compatibility parameter that can be used for the default fm_CRS() method)

doCheckCRSArgs

ignored.

args

An optional list of name/value pairs to add to and/or override the PROJ4 arguments in projargs. name=value is converted to "+name=value", and name=NA is converted to "+name".

SRS_string

a WKT2 string defining the coordinate system; see sp::CRS. This takes precedence over projargs.

Details

The first two elements of the oblique vector are the (longitude, latitude) coordinates for the oblique centre point. The third value (orientation) is a counterclockwise rotation angle for an observer looking at the centre point from outside the sphere. The fourth value is the quasi-longitude (orbit angle) for a rotation along the oblique observers equator.

Simple oblique: oblique=c(0, 45)

Polar: oblique=c(0, 90)

Quasi-transversal: oblique=c(0, 0, 90)

Satellite orbit viewpoint: oblique=c(lon0-time*v1, 0, orbitangle, orbit0+time*v2), where lon0 is the longitude at which a satellite orbit crosses the equator at time=0, when the satellite is at an angle orbit0 further along in its orbit. The orbital angle relative to the equatorial plane is orbitangle, and v1 and v2 are the angular velocities of the planet and the satellite, respectively. Note that "forward" from the satellite's point of view is "to the right" in the projection.

When oblique[2] or oblique[3] are non-zero, the resulting projection is only correct for perfect spheres.

Value

Either an sp::CRS object or an inla.CRS object, depending on if the coordinate reference system described by the parameters can be expressed with a pure sp::CRS object or not.

An S3 inla.CRS object is a list, usually (but not necessarily) containing at least one element:

crs

The basic sp::CRS object

Functions

  • is.na(fm_CRS): Check if a fm_CRS has NA crs information and NA obliqueness

  • is.na(inla.CRS): Check if a inla.CRS has NA crs information and NA obliqueness

Author(s)

Finn Lindgren [email protected]

See Also

fm_crs(), sp::CRS(), fm_crs_wkt, fm_sp_get_crs(), fm_crs_is_identical()

Examples

if (fm_safe_sp()) {
  crs1 <- fm_CRS("longlat_globe")
  crs2 <- fm_CRS("lambert_globe")
  crs3 <- fm_CRS("mollweide_norm")
  crs4 <- fm_CRS("hammer_globe")
  crs5 <- fm_CRS("sphere")
  crs6 <- fm_CRS("globe")
}

Check if two CRS objects are identical

Description

Check if two CRS objects are identical

Usage

fm_crs_is_identical(crs0, crs1, crsonly = FALSE)

fm_identical_CRS(crs0, crs1, crsonly = FALSE)

Arguments

crs0, crs1

Two sf::crs, sp::CRS, fm_crs or inla.CRS objects to be compared.

crsonly

logical. If TRUE and any of crs0 and crs1 are fm_crs or inla.CRS objects, extract and compare only the sf::crs or sp::CRS aspects. Default: FALSE

Value

logical, indicating if the two crs objects are identical in the specified sense (see the crsonly argument)

Functions

  • fm_identical_CRS(): [Deprecated] by fm_crs_is_identical().

See Also

fm_crs(), fm_CRS(), fm_crs_is_null()

Examples

crs0 <- crs1 <- fm_crs("longlat_globe")
fm_crs_oblique(crs1) <- c(0, 90)
print(c(
  fm_crs_is_identical(crs0, crs0),
  fm_crs_is_identical(crs0, crs1),
  fm_crs_is_identical(crs0, crs1, crsonly = TRUE)
))

Check if a crs is NULL or NA

Description

Methods of checking whether various kinds of CRS objects are NULL or NA. Logically equivalent to either is.na(fm_crs(x)) or is.na(fm_crs(x, oblique = NA)), but with a short-cut pre-check for is.null(x).

Usage

fm_crs_is_null(x, crsonly = FALSE)

## S3 method for class 'fm_crs'
is.na(x)

Arguments

x

An object supported by fm_crs(x)

crsonly

For crs objects with extended functionality, such as fm_crs() objects with oblique information, crsonly = TRUE only checks the plain CRS part.

Value

logical

Functions

  • fm_crs_is_null(): Check if an object is or has NULL or NA CRS information. If not NULL, is.na(fm_crs(x)) is returned. This allows the input to be e.g. a proj4string or epsg number, since the default fm_crs() method passes its argument on to sf::st_crs().

  • is.na(fm_crs): Check if a fm_crs has NA crs information and NA obliqueness

See Also

fm_crs(), fm_CRS(), fm_crs_is_identical()

Examples

fm_crs_is_null(NULL)
fm_crs_is_null(27700)
fm_crs_is_null(fm_crs())
fm_crs_is_null(fm_crs(27700))
fm_crs_is_null(fm_crs(oblique = c(1, 2, 3, 4)))
fm_crs_is_null(fm_crs(oblique = c(1, 2, 3, 4)), crsonly = TRUE)
fm_crs_is_null(fm_crs(27700, oblique = c(1, 2, 3, 4)))
fm_crs_is_null(fm_crs(27700, oblique = c(1, 2, 3, 4)), crsonly = TRUE)

Plot CRS and fm_crs objects

Description

[Experimental] Plot the outline of a crs or fm_crs() projection, with optional graticules (transformed parallels and meridians) and Tissot indicatrices.

Usage

fm_crs_plot(
  x,
  xlim = NULL,
  ylim = NULL,
  outline = TRUE,
  graticule = c(15, 15, 45),
  tissot = c(30, 30, 30),
  asp = 1,
  add = FALSE,
  eps = 0.05,
  ...
)

fm_crs_graticule(
  x,
  by = c(15, 15, 45),
  add = FALSE,
  do.plot = TRUE,
  eps = 0.05,
  ...
)

fm_crs_tissot(
  x,
  by = c(30, 30, 30),
  add = FALSE,
  do.plot = TRUE,
  eps = 0.05,
  diff.eps = 0.01,
  ...
)

Arguments

x

A crs or fm_crs() object.

xlim

Optional x-axis limits.

ylim

Optional y-axis limits.

outline

Logical, if TRUE, draw the outline of the projection.

graticule

Vector of length at most 3, to plot meridians with spacing graticule[1] degrees and parallels with spacing graticule[2] degrees. graticule[3] optionally specifies the spacing above and below the first and last parallel. When graticule[1]==0 no meridians are drawn, and when graticule[2]==0 no parallels are drawn. Use graticule=NULL to skip drawing a graticule.

tissot

Vector of length at most 3, to plot Tissot's indicatrices with spacing tissot[1] degrees and parallels with spacing tissot[2] degrees. tissot[3] specifices a scaling factor. Use tissot=NULL to skip drawing a Tissot's indicatrices.

asp

The aspect ratio for the plot, default 1.

add

If TRUE, add the projecton plot to an existing plot.

eps

Clipping tolerance for rudimentary boundary clipping

...

Additional arguments passed on to the internal calls to plot and lines.

by

The spacing between ⁠(long, lat, long_at_poles)⁠ graticules/indicatrices, see the graticule and tissot arguments.

do.plot

logical; If TRUE, do plotting

diff.eps

Pre-scaling

Value

NULL, invisibly

Functions

  • fm_crs_graticule(): [Experimental] Constructs graticule information for a given CRS or fm_crs() and optionally plots the graticules. Returns a list with two elements, meridians and parallels, which are SpatialLines objects.

  • fm_crs_tissot(): [Experimental] Constructs Tissot indicatrix information for a given CRS or fm_crs() and optionally plots the indicatrices. Returns a list with one element, tissot, which is a SpatialLines object.

Author(s)

Finn Lindgren [email protected]

See Also

fm_crs()

Examples

if (require("sf") && require("sp")) {
  for (projtype in c(
    "longlat_norm",
    "lambert_norm",
    "mollweide_norm",
    "hammer_norm"
  )) {
    fm_crs_plot(fm_crs(projtype), main = projtype)
  }
}

if (require("sf") && require("sp")) {
  oblique <- c(0, 45, 45, 0)
  for (projtype in c(
    "longlat_norm",
    "lambert_norm",
    "mollweide_norm",
    "hammer_norm"
  )) {
    fm_crs_plot(
      fm_crs(projtype, oblique = oblique),
      main = paste("oblique", projtype)
    )
  }
}

Handling CRS/WKT

Description

Get and set CRS object or WKT string properties.

Usage

fm_wkt_is_geocent(wkt)

fm_crs_is_geocent(crs)

fm_wkt_get_ellipsoid_radius(wkt)

fm_crs_get_ellipsoid_radius(crs)

fm_ellipsoid_radius(x)

## Default S3 method:
fm_ellipsoid_radius(x)

## S3 method for class 'character'
fm_ellipsoid_radius(x)

fm_wkt_set_ellipsoid_radius(wkt, radius)

fm_ellipsoid_radius(x) <- value

## S3 replacement method for class 'character'
fm_ellipsoid_radius(x) <- value

## S3 replacement method for class 'CRS'
fm_ellipsoid_radius(x) <- value

## S3 replacement method for class 'fm_CRS'
fm_ellipsoid_radius(x) <- value

## S3 replacement method for class 'crs'
fm_ellipsoid_radius(x) <- value

## S3 replacement method for class 'fm_crs'
fm_ellipsoid_radius(x) <- value

fm_crs_set_ellipsoid_radius(crs, radius)

fm_wkt_unit_params()

fm_wkt_get_lengthunit(wkt)

fm_wkt_set_lengthunit(wkt, unit, params = NULL)

fm_crs_get_lengthunit(crs)

fm_crs_set_lengthunit(crs, unit)

fm_length_unit(x)

## Default S3 method:
fm_length_unit(x)

## S3 method for class 'character'
fm_length_unit(x)

fm_length_unit(x) <- value

## S3 replacement method for class 'character'
fm_length_unit(x) <- value

## S3 replacement method for class 'CRS'
fm_length_unit(x) <- value

## S3 replacement method for class 'fm_CRS'
fm_length_unit(x) <- value

## S3 replacement method for class 'crs'
fm_length_unit(x) <- value

## S3 replacement method for class 'fm_crs'
fm_length_unit(x) <- value

fm_wkt(crs)

fm_proj4string(crs)

fm_crs_get_wkt(crs)

fm_wkt_tree_projection_type(wt)

fm_wkt_projection_type(wkt)

fm_crs_projection_type(crs)

fm_crs_bounds(crs, warn.unknown = FALSE)

## S3 replacement method for class 'inla.CRS'
fm_ellipsoid_radius(x) <- value

## S3 replacement method for class 'inla.CRS'
fm_length_unit(x) <- value

Arguments

wkt

A WKT2 character string

crs

An sf::crs, sp::CRS, fm_crs or inla.CRS object

x

crs object to extract value from or assign values in

radius

numeric; The new radius value

value

Value to assign

unit

character, name of a unit. Supported names are "metre", "kilometre", and the aliases "meter", "m", International metre", "kilometer", and "km", as defined by fm_wkt_unit_params or the params argument. (For legacy PROJ4 use, only "m" and "km" are supported)

params

Length unit definitions, in the list format produced by fm_wkt_unit_params(), Default: NULL, which invokes fm_wkt_unit_params()

wt

A parsed wkt tree, see fm_wkt_as_wkt_tree()

warn.unknown

logical, default FALSE. Produce warning if the shape of the projection bounds is unknown.

Value

For fm_wkt_unit_params, a list of named unit definitions

For fm_wkt_get_lengthunit, a list of length units used in the wkt string, excluding the ellipsoid radius unit.

For fm_wkt_set_lengthunit, a WKT2 string with altered length units. Note that the length unit for the ellipsoid radius is unchanged.

For fm_crs_get_lengthunit, a list of length units used in the wkt string, excluding the ellipsoid radius unit. (For legacy PROJ4 code, the raw units from the proj4string are returned, if present.)

For ⁠fm_length_unit<-⁠, a crs object with altered length units. Note that the length unit for the ellipsoid radius is unchanged.

Functions

  • fm_wkt(): Returns a WKT2 string, for any input supported by fm_crs().

  • fm_proj4string(): Returns a proj4 string, for any input supported by fm_crs().

  • fm_crs_get_wkt(): [Deprecated] Use fm_wkt() instead.

  • fm_wkt_tree_projection_type(): Returns "longlat", "lambert", "mollweide", "hammer", "tmerc", or NULL

  • fm_wkt_projection_type(): See fm_wkt_tree_projection_type

  • fm_crs_projection_type(): See fm_wkt_tree_projection_type

  • fm_crs_bounds(): Returns bounds information for a projection, as a list with elements type ("rectangle" or "ellipse"), xlim, ylim, and polygon.

Author(s)

Finn Lindgren [email protected]

See Also

fm_crs()

Examples

c1 <- fm_crs("globe")
fm_crs_get_lengthunit(c1)
c2 <- fm_crs_set_lengthunit(c1, "m")
fm_crs_get_lengthunit(c2)

Assignment operators for crs information objects

Description

Assigns new crs information.

Usage

fm_crs(x) <- value

fm_crs_oblique(x) <- value

## S3 replacement method for class 'NULL'
fm_crs(x) <- value

## S3 replacement method for class 'NULL'
fm_crs_oblique(x) <- value

## S3 replacement method for class 'fm_segm'
fm_crs(x) <- value

## S3 replacement method for class 'fm_list'
fm_crs(x) <- value

## S3 replacement method for class 'fm_mesh_2d'
fm_crs(x) <- value

## S3 replacement method for class 'fm_lattice_2d'
fm_crs(x) <- value

## S3 replacement method for class 'sf'
fm_crs(x) <- value

## S3 replacement method for class 'sfg'
fm_crs(x) <- value

## S3 replacement method for class 'sfc'
fm_crs(x) <- value

## S3 replacement method for class 'Spatial'
fm_crs(x) <- value

## S3 replacement method for class 'crs'
fm_crs_oblique(x) <- value

## S3 replacement method for class 'CRS'
fm_crs_oblique(x) <- value

## S3 replacement method for class 'fm_CRS'
fm_crs_oblique(x) <- value

## S3 replacement method for class 'fm_crs'
fm_crs_oblique(x) <- value

## S3 replacement method for class 'fm_segm'
fm_crs_oblique(x) <- value

## S3 replacement method for class 'fm_mesh_2d'
fm_crs_oblique(x) <- value

## S3 replacement method for class 'fm_lattice_2d'
fm_crs_oblique(x) <- value

## S3 replacement method for class 'inla.CRS'
fm_crs_oblique(x) <- value

Arguments

x

Object to assign crs information to

value

For ⁠fm_crs<-()⁠, object supported by fm_crs(value).

For ⁠fm_crs_oblique<-()⁠, NA or a numeric vector, see the oblique argument for fm_crs(). For assignment, NULL is treated as NA.

Value

The modified object

Functions

  • fm_crs(x) <- value: Automatically converts the input value with fm_crs(value), fm_crs(value, oblique = NA), fm_CRS(value), or fm_CRS(value, oblique = NA), depending on the type of x.

  • fm_crs_oblique(x) <- value: Assigns new oblique information.

See Also

fm_crs()

Examples

x <- fm_segm()
fm_crs(x) <- fm_crs("+proj=longlat")
fm_crs(x)$proj4string

Detect manifold type

Description

Detect if a 2d object is on "R2", "S2", or "M2"

Usage

fm_detect_manifold(x)

fm_crs_detect_manifold(x)

## S3 method for class 'crs'
fm_detect_manifold(x)

## S3 method for class 'CRS'
fm_detect_manifold(x)

## S3 method for class 'numeric'
fm_detect_manifold(x)

## S3 method for class 'matrix'
fm_detect_manifold(x)

## S3 method for class 'fm_mesh_2d'
fm_detect_manifold(x)

Arguments

x

Object to investigate

Value

A string containing the detected manifold classification

Functions

  • fm_crs_detect_manifold(): Detect if a crs is on "R2" or "S2" (if fm_crs_is_geocent(crs) is TRUE). Returns NA_character_ if the crs is NULL or NA.

Examples

fm_detect_manifold(1:4)
fm_detect_manifold(rbind(c(1, 0, 0), c(0, 1, 0), c(1, 1, 0)))
fm_detect_manifold(rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1)))

Diameter bound for a geometric object

Description

Find an upper bound to the convex hull of a point set

Usage

fm_diameter(x, ...)

## S3 method for class 'matrix'
fm_diameter(x, manifold = NULL, ...)

## S3 method for class 'sf'
fm_diameter(x, ...)

## S3 method for class 'sfg'
fm_diameter(x, ...)

## S3 method for class 'sfc'
fm_diameter(x, ...)

## S3 method for class 'fm_lattice_2d'
fm_diameter(x, ...)

## S3 method for class 'fm_mesh_1d'
fm_diameter(x, ...)

## S3 method for class 'fm_mesh_2d'
fm_diameter(x, ...)

## S3 method for class 'fm_segm'
fm_diameter(x, ...)

## S3 method for class 'fm_mesh_3d'
fm_diameter(x, ...)

Arguments

x

A point set as an n×dn\times d matrix, or an fm_mesh_2d/⁠1d⁠/sf related object.

...

Additional parameters passed on to the submethods.

manifold

Character string specifying the manifold type. Default is to treat the point set with Euclidean RdR^d metrics. Use manifold="S2" for great circle distances on the unit sphere (this is set automatically for fm_fmesh_2d objects).

Value

A scalar, upper bound for the diameter of the convex hull of the point set.

Author(s)

Finn Lindgren [email protected]

Examples

fm_diameter(matrix(c(0, 1, 1, 0, 0, 0, 1, 1), 4, 2))

Function spece degrees of freedom

Description

Obtain the degrees of freedom of a function space, i.e. the number of basis functions it uses.

Usage

fm_dof(x)

## S3 method for class 'fm_mesh_1d'
fm_dof(x)

## S3 method for class 'fm_mesh_2d'
fm_dof(x)

## S3 method for class 'fm_mesh_3d'
fm_dof(x)

## S3 method for class 'fm_tensor'
fm_dof(x)

## S3 method for class 'fm_lattice_2d'
fm_dof(x)

Arguments

x

A function space object, such as fm_mesh_1d() or fm_mesh_2d()

Value

An integer

Examples

fm_dof(fmexample$mesh)

Methods for projecting to/from mesh objects

Description

Calculate evaluation information and/or evaluate a function defined on a mesh or function space.

Usage

fm_evaluate(...)

## Default S3 method:
fm_evaluate(mesh, field, ...)

## S3 method for class 'fm_evaluator'
fm_evaluate(projector, field, ...)

## S3 method for class 'fm_basis'
fm_evaluate(basis, field, ...)

fm_evaluator(...)

## Default S3 method:
fm_evaluator(...)

## S3 method for class 'fm_mesh_2d'
fm_evaluator(mesh, loc = NULL, lattice = NULL, crs = NULL, ...)

## S3 method for class 'fm_mesh_1d'
fm_evaluator(mesh, loc = NULL, xlim = mesh$interval, dims = 100, ...)

fm_evaluator_lattice(
  mesh,
  xlim = NULL,
  ylim = NULL,
  dims = c(100, 100),
  projection = NULL,
  crs = NULL,
  ...
)

Arguments

...

Additional arguments passed on to methods.

mesh

An fm_mesh_1d, fm_mesh_2d, or other object supported by a sub-method.

field

Basis function weights, one per mesh basis function, describing the function to be evaluated at the projection locations

projector

An fm_evaluator object.

basis

An fm_basis object.

loc

Projection locations. Can be a matrix, SpatialPoints, SpatialPointsDataFrame, sf, sfc, or sfg object.

lattice

An fm_lattice_2d() object.

crs

An optional CRS or inla.CRS object associated with loc and/or lattice.

xlim

X-axis limits for a lattice. For R2 meshes, defaults to covering the domain.

dims

Lattice dimensions.

ylim

Y-axis limits for a lattice. For R2 meshes, defaults to covering the domain.

projection

One of c("default", "longlat", "longsinlat", "mollweide").

Value

A vector or matrix of the evaluated function

An fm_evaluator object

Methods (by class)

  • fm_evaluate(default): The default method calls proj = fm_evaluator(mesh, ...), followed by fm_evaluate(proj, field).

Functions

  • fm_evaluate(): Returns the field function evaluated at the locations determined by an fm_evaluator object. fm_evaluate(mesh, field = field, ...) is a shortcut to fm_evaluate(fm_evaluator(mesh, ...), field = field).

  • fm_evaluator(): Returns an fm_evaluator list object with evaluation information. The proj element is a fm_basis object, containing (at least) a mapping matrix A and a logical vector ok, that indicates which locations were mappable to the input mesh. For fm_mesh_2d input, proj also contains a bary fm_bary object, with the barycentric coordinates within the triangle each input location falls in.

  • fm_evaluator(default): The default method calls fm_basis and creates a basic fm_evaluator object

  • fm_evaluator(fm_mesh_2d): The ... arguments are passed on to fm_evaluator_lattice() if no loc or lattice is provided.

  • fm_evaluator_lattice(): Creates an fm_lattice_2d() object, by default covering the input mesh.

Author(s)

Finn Lindgren [email protected]

See Also

fm_mesh_2d(), fm_mesh_1d(), fm_lattice_2d()

Examples

if (TRUE) {
  n <- 20
  loc <- matrix(runif(n * 2), n, 2)
  mesh <- fm_rcdt_2d_inla(loc, refine = list(max.edge = 0.05))
  proj <- fm_evaluator(mesh)
  field <- cos(mesh$loc[, 1] * 2 * pi * 3) * sin(mesh$loc[, 2] * 2 * pi * 7)
  image(proj$x, proj$y, fm_evaluate(proj, field))
}

# if (require("ggplot2") &&
#  require("ggpolypath")) {
#  ggplot() +
#    gg(data = fm_as_sfc(mesh), col = field)
# }

Compute finite element matrices

Description

(...)

Usage

fm_fem(mesh, order = 2, ...)

## S3 method for class 'fm_mesh_1d'
fm_fem(mesh, order = 2, ...)

## S3 method for class 'fm_mesh_2d'
fm_fem(mesh, order = 2, aniso = NULL, ...)

## S3 method for class 'fm_tensor'
fm_fem(mesh, order = 2, ...)

## S3 method for class 'fm_mesh_3d'
fm_fem(mesh, order = 2, ...)

Arguments

mesh

fm_mesh_1d or other supported mesh class object

order

integer

...

Currently unused

aniso

If non-NULL, a list(gamma, v). Calculates anisotropic structure matrices (in addition to the regular) for γ\gamma and vv for an anisotropic operator H\nabla\cdot H \nabla, where H=γI+vvH=\gamma I + v v^\top. Currently (2023-08-05) the fields need to be given per vertex.

Value

fm_fem.fm_mesh_1d: A list with elements c0, c1, g1, g2. When mesh$degree == 2, also g01, g02, and g12.

fm_fem.fm_mesh_2d: A list with elements c0, c1, g1, va, ta, and more if order > 1. When aniso is non-NULL, also g1aniso matrices, etc.

fm_fem.fm_tensor: A list with elements cc, g1, g2.

fm_fem.fm_mesh_3d: A list with elements c0, c1, g1, g2, va, ta, and more if order > 2.

Examples

str(fm_fem(fmexample$mesh))

SPDE, GMRF, and Matérn process methods

Description

[Experimental] Methods for SPDEs and GMRFs.

Usage

fm_matern_precision(x, alpha, rho, sigma)

fm_matern_sample(x, alpha = 2, rho, sigma, n = 1, loc = NULL)

fm_covariance(Q, A1 = NULL, A2 = NULL, partial = FALSE)

fm_sample(n, Q, mu = 0, constr = NULL)

Arguments

x

A mesh object, e.g. from fm_mesh_1d() or fm_mesh_2d().

alpha

The SPDE operator order. The resulting smoothness index is nu = alpha - dim / 2.

rho

The Matérn range parameter (scale parameter kappa = sqrt(8 * nu) / rho)

sigma

The nominal Matérn std.dev. parameter

n

The number of samples to generate

loc

locations to evaluate the random field, compatible with fm_evaluate(x, loc = loc, field = ...)

Q

A precision matrix

A1, A2

Matrices, typically obtained from fm_basis() and/or fm_block().

partial

[Experimental] If TRUE, compute the partial inverse of Q, i.e. the elements of the inverse corresponding to the non-zero pattern of Q. (Note: This can be done efficiently with the Takahashi recursion method, but to avoid an RcppEigen dependency this is currently disabled, and a slower method is used until the efficient method is reimplemented.)

mu

Optional mean vector

constr

Optional list of constraint information, with elements A and e. Should only be used for a small number of exact constraints.

Value

fm_matern_sample() returns a matrix, where each column is a sampled field. If loc is NULL, the fm_dof(mesh) basis weights are given. Otherwise, the evaluated field at the nrow(loc) locations loc are given (from version ⁠0.1.4.9001⁠)

Functions

  • fm_matern_precision(): Construct the (sparse) precision matrix for the basis weights for Whittle-Matérn SPDE models. The boundary behaviour is determined by the provided mesh function space.

  • fm_matern_sample(): Simulate a Matérn field given a mesh and covariance function parameters, and optionally evaluate at given locations.

  • fm_covariance(): Compute the covariance between "A1 x" and "A2 x", when x is a basis vector with precision matrix Q.

  • fm_sample(): Generate n samples based on a sparse precision matrix Q

Examples

library(Matrix)
mesh <- fm_mesh_1d(-20:120, degree = 2)
Q <- fm_matern_precision(mesh, alpha = 2, rho = 15, sigma = 1)
x <- seq(0, 100, length.out = 601)
A <- fm_basis(mesh, x)
plot(x,
  as.vector(Matrix::diag(fm_covariance(Q, A))),
  type = "l",
  ylab = "marginal variances"
)

plot(x,
  fm_evaluate(mesh, loc = x, field = fm_sample(1, Q)[, 1]),
  type = "l",
  ylab = "process sample"
)

Multi-domain integration

Description

Construct integration points on tensor product spaces

Usage

fm_int(domain, samplers = NULL, ...)

## S3 method for class 'list'
fm_int(domain, samplers = NULL, ...)

## S3 method for class 'numeric'
fm_int(domain, samplers = NULL, name = "x", ...)

## S3 method for class 'character'
fm_int(domain, samplers = NULL, name = "x", ...)

## S3 method for class 'factor'
fm_int(domain, samplers = NULL, name = "x", ...)

## S3 method for class 'SpatRaster'
fm_int(domain, samplers = NULL, name = "x", ...)

## S3 method for class 'fm_lattice_2d'
fm_int(domain, samplers = NULL, name = "x", ...)

## S3 method for class 'fm_mesh_1d'
fm_int(
  domain,
  samplers = NULL,
  name = "x",
  int.args = NULL,
  format = NULL,
  ...
)

## S3 method for class 'fm_mesh_2d'
fm_int(
  domain,
  samplers = NULL,
  name = NULL,
  int.args = NULL,
  format = NULL,
  ...
)

Arguments

domain

Functional space specification; single domain or a named list of domains

samplers

For single domain fm_int methods, an object specifying one or more subsets of the domain, and optional weighting in a weight variable. For fm_int.list, a list of sampling definitions, where data frame elements may contain information for multiple domains, in which case each row represent a separate tensor product integration subspace.

...

Additional arguments passed on to other methods

name

For single-domain methods, the variable name to use for the integration points. Default 'x'

int.args

List of arguments passed to line and integration methods.

  • method: "stable" (to aggregate integration weights onto mesh nodes) or "direct" (to construct a within triangle/segment integration scheme without aggregating onto mesh nodes)

  • nsub1, nsub2: integers controlling the number of internal integration points before aggregation. Points per triangle: (nsub2+1)^2. Points per knot segment: nsub1

format

character; determines the output format, as either "sf" (default for fm_mesh_2d when the sampler is NULL), "numeric" (default for fm_mesh_1d), "bary", or "sp". When NULL, determined by the domain and sampler types.

Value

A tibble, sf, or SpatialPointsDataFrame of 1D and 2D integration points, including a weight column and .block column.

Methods (by class)

  • fm_int(list): Multi-domain integration

  • fm_int(numeric): Discrete double or integer space integration

  • fm_int(character): Discrete character space integration

  • fm_int(factor): Discrete factor space integration

  • fm_int(SpatRaster): SpatRaster integration. Not yet implemented.

  • fm_int(fm_lattice_2d): fm_lattice_2d integration. Not yet implemented.

  • fm_int(fm_mesh_1d): fm_mesh_1d integration. Supported samplers:

    • NULL for integration over the entire domain;

    • A length 2 vector defining an interval;

    • A 2-column matrix with a single interval in each row;

    • A tibble with a named column containing a matrix, and optionally a weight column.

  • fm_int(fm_mesh_2d): fm_mesh_2d integration. Any sampler class with an associated fm_int_mesh_2d() method is supported.

Examples

# Integration on the interval (2, 3.5) with Simpson's rule
ips <- fm_int(fm_mesh_1d(0:4), samplers = cbind(2, 3.5))
plot(ips$x, ips$weight)

# Create integration points for the two intervals [0,3] and [5,10]
ips <- fm_int(
  fm_mesh_1d(0:10),
  matrix(c(0, 3, 5, 10), nrow = 2, byrow = TRUE)
)
plot(ips$x, ips$weight)

# Convert a 1D mesh into integration points
mesh <- fm_mesh_1d(seq(0, 10, by = 1))
ips <- fm_int(mesh, name = "time")
plot(ips$time, ips$weight)

if (require("ggplot2", quietly = TRUE)) {
  #' Integrate on a 2D mesh with polygon boundary subset
  ips <- fm_int(fmexample$mesh, fmexample$boundary_sf[[1]])
  ggplot() +
    geom_sf(data = fm_as_sfc(fmexample$mesh, multi = TRUE), alpha = 0.5) +
    geom_sf(data = fmexample$boundary_sf[[1]], fill = "red", alpha = 0.5) +
    geom_sf(data = ips, aes(size = weight)) +
    scale_size_area()
}

ips <- fm_int(
  fm_mesh_1d(0:10, boundary = "cyclic"),
  rbind(c(0, 3), c(5, 10))
)
plot(ips$x, ips$weight)

Query if points are inside a mesh

Description

Queries whether each input point is within a mesh or not.

Usage

fm_is_within(x, y, ...)

Arguments

x

A set of points/locations of a class supported by fm_basis(y, loc = x, ..., full = TRUE)

y

An fm_mesh_2d or other class supported by fm_basis(y, loc = x, ..., full = TRUE)

...

Passed on to fm_basis()

Value

A logical vector

Examples

all(fm_is_within(fmexample$loc, fmexample$mesh))

Make a lattice object

Description

Construct a lattice grid for fm_mesh_2d()

Usage

fm_lattice_2d(...)

## Default S3 method:
fm_lattice_2d(
  x = seq(0, 1, length.out = 2),
  y = seq(0, 1, length.out = 2),
  z = NULL,
  dims = if (is.matrix(x)) {
     dim(x)
 } else {
     c(length(x), length(y))
 },
  units = NULL,
  crs = NULL,
  ...
)

Arguments

...

Passed on to submethods

x

vector or grid matrix of x-values. Vector values are sorted before use. Matrix input is assumed to be a grid of x-values with the same ordering convention of as.vector(x) as rep(x, times = dims[2]) for vector input.

y

vector of grid matrix of y-values. Vector values are sorted before use. Matrix input is assumed to be a grid of y-values with the same ordering convention of as.vector(y) as rep(y, each = dims[1]) for vector input.

z

if x is a matrix, a grid matrix of z-values, with the same ordering as x and y. If x is a vector, z is ignored.

dims

the size of the grid, length 2 vector

units

One of c("default", "longlat", "longsinlat", "mollweide") or NULL (equivalent to "default").

crs

An optional fm_crs, sf::st_crs, or sp::CRS object, denoting the CRS info for the x-y grid.

Value

An fm_lattice_2d object with elements

dims

integer vector

x

x-values for original vector input

y

y-values for original vector input

loc

matrix of ⁠(x, y)⁠ values or ⁠(x, y, z)⁠ values. May be altered by fm_transform()

segm

fm_segm object

crs

fm_crs object for loc, or NULL

crs0

fm_crs object for ⁠(x,y)⁠, or NULL

Author(s)

Finn Lindgren [email protected]

See Also

fm_mesh_2d()

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

lattice <- fm_lattice_2d(
  seq(0, 1, length.out = 17),
  seq(0, 1, length.out = 10)
)

## Use the lattice "as-is", without refinement:
mesh <- fm_rcdt_2d_inla(lattice = lattice, boundary = lattice$segm)
mesh <- fm_rcdt_2d_inla(lattice = lattice, extend = FALSE)

## Refine the triangulation, with limits on triangle angles and edges:
mesh <- fm_rcdt_2d(
  lattice = lattice,
  refine = list(max.edge = 0.08),
  extend = FALSE
)

## Add an extension around the lattice, but maintain the lattice edges:
mesh <- fm_rcdt_2d(
  lattice = lattice,
  refine = list(max.edge = 0.08),
  interior = lattice$segm
)

## Only add extension:
mesh <- fm_rcdt_2d(lattice = lattice, refine = list(max.edge = 0.08))

Handle lists of fmesher objects

Description

Methods for constructing and manipulating fm_list objects.

Usage

fm_list(x, ..., .class_stub = NULL)

fm_as_list(x, ..., .class_stub = NULL)

## S3 method for class 'fm_list'
c(...)

## S3 method for class 'fm_list'
x[i]

Arguments

x

fm_list object from which to extract element(s)

...

Arguments passed to each individual conversion call.

.class_stub

character; class stub name of class to convert each list element to. If NULL, uses fm_as_fm and auto-detects if the resulting list has consistent class, and then adds that to the class list. If non-null, uses paste0("fm_as_", .class_stub) for conversion, and verifies that the resulting list has elements consistent with that class.

i

indices specifying elements to extract

Value

An fm_list object, potentially with ⁠fm_{class_stub}_list⁠ added.

Methods (by generic)

  • c(fm_list): The ... arguments should be coercible to fm_list objects.

  • [: Extract sub-list

Functions

  • fm_list(): Convert each element of a list, or convert a single non-list object and return in a list

  • fm_as_list(): Convert each element of a list, or convert a single non-list object and return in a list

Examples

fm_as_list(list(fmexample$mesh, fm_segm_join(fmexample$boundary_fm)))

Query the mesh manifold type

Description

Extract a manifold definition string, or a logical for matching manifold type

Usage

fm_manifold(x, type = NULL)

fm_manifold_get(x)

## Default S3 method:
fm_manifold_get(x)

## S3 method for class 'character'
fm_manifold_get(x)

fm_manifold_type(x)

fm_manifold_dim(x)

Arguments

x

An object with manifold information, or a character string

type

character; if NULL (the default), returns the manifold definition string by calling fm_manifold_get(x). If character, returns TRUE if the manifold type of x matches at least one of the character vector elements.

Value

fm_manifold(): Either logical (matching manifold type yes/no), or character (the stored manifold, when is.null(type) is TRUE)

fm_manifold_get(): character or NULL

fm_manifold_type(): character or NULL; "M" (curved manifold), "R" (flat space), "S" (generalised spherical space), "T" (general tensor product space), or "G" (metric graph)

fm_manifold_dim(): integer or NULL

Functions

  • fm_manifold_get(): Method for obtaining a text representation of the manifold characteristics, e.g. "R1", "R2", "M2", or "T3". The default method assumes that the manifold is stored as a character string in a "manifold" element of the object, so it can be extracted with x[["manifold"]]. Object classes that do not store the information in this way need to implement their own method.

Examples

fm_manifold_get(fmexample$mesh)
fm_manifold(fmexample$mesh)
fm_manifold(fmexample$mesh, "R2")
fm_manifold_type(fmexample$mesh)
fm_manifold_dim(fmexample$mesh)

Make a 1D mesh object

Description

Create a fm_mesh_1d object.

Usage

fm_mesh_1d(
  loc,
  interval = range(loc),
  boundary = NULL,
  degree = 1,
  free.clamped = FALSE,
  ...
)

Arguments

loc

B-spline knot locations.

interval

Interval domain endpoints.

boundary

Boundary condition specification. Valid conditions are c('neumann', 'dirichlet', 'free', 'cyclic'). Two separate values can be specified, one applied to each endpoint.

degree

The B-spline basis degree. Supported values are 0, 1, and 2.

free.clamped

If TRUE, for 'free' boundaries, clamp the basis functions to the interval endpoints.

...

Additional options, currently unused.

Value

An fm_mesh_1d object

Author(s)

Finn Lindgren [email protected]

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_2d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

if (require("ggplot2")) {
  m <- fm_mesh_1d(c(1, 2, 3, 5, 8, 10),
    boundary = c("neumann", "free"),
    degree = 2
  )
  ggplot() +
    geom_fm(data = m, xlim = c(0.5, 10.5))
}

Make a 2D mesh object

Description

Make a 2D mesh object

Usage

fm_mesh_2d(...)

fm_mesh_2d_inla(
  loc = NULL,
  loc.domain = NULL,
  offset = NULL,
  n = NULL,
  boundary = NULL,
  interior = NULL,
  max.edge = NULL,
  min.angle = NULL,
  cutoff = 1e-12,
  max.n.strict = NULL,
  max.n = NULL,
  plot.delay = NULL,
  crs = NULL,
  ...
)

Arguments

...

Currently passed on to fm_mesh_2d_inla

loc

Matrix of point locations to be used as initial triangulation nodes. Can alternatively be a sf, sfc, SpatialPoints or SpatialPointsDataFrame object.

loc.domain

Matrix of point locations used to determine the domain extent. Can alternatively be a SpatialPoints or SpatialPointsDataFrame object.

offset

The automatic extension distance. One or two values, for an inner and an optional outer extension. If negative, interpreted as a factor relative to the approximate data diameter (default=-0.10???)

n

The number of initial nodes in the automatic extensions (default=16)

boundary

one or more (as list) of fm_segm() objects, or objects supported by fm_as_segm()

interior

one object supported by fm_as_segm()

max.edge

The largest allowed triangle edge length. One or two values.

min.angle

The smallest allowed triangle angle. One or two values. (Default=21)

cutoff

The minimum allowed distance between points. Point at most as far apart as this are replaced by a single vertex prior to the mesh refinement step.

max.n.strict

The maximum number of vertices allowed, overriding min.angle and max.edge (default=-1, meaning no limit). One or two values, where the second value gives the number of additional vertices allowed for the extension.

max.n

The maximum number of vertices allowed, overriding max.edge only (default=-1, meaning no limit). One or two values, where the second value gives the number of additional vertices allowed for the extension.

plot.delay

If logical TRUE or a negative numeric value, activates displaying the result after each step of the multi-step domain extension algorithm.

crs

An optional fm_crs(), sf::crs or sp::CRS object

Value

An fm_mesh_2d object.

Functions

  • fm_mesh_2d_inla(): Legacy method for INLA::inla.mesh.2d() Create a triangle mesh based on initial point locations, specified or automatic boundaries, and mesh quality parameters.

INLA compatibility

For mesh and curve creation, the fm_rcdt_2d_inla(), fm_mesh_2d_inla(), and fm_nonconvex_hull_inla() methods will keep the interface syntax used by INLA::inla.mesh.create(), INLA::inla.mesh.2d(), and INLA::inla.nonconvex.hull() functions, respectively, whereas the fm_rcdt_2d(), fm_mesh_2d(), and fm_nonconvex_hull() interfaces may be different, and potentially change in the future.

Author(s)

Finn Lindgren [email protected]

See Also

fm_rcdt_2d(), fm_mesh_2d(), fm_delaunay_2d(), fm_nonconvex_hull(), fm_extensions(), fm_refine()

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_segm(), fm_simplify(), fm_tensor()

Examples

fm_mesh_2d_inla(boundary = fm_extensions(cbind(2, 1), convex = 1, 2))

Construct a 3D tetrahedralisation

Description

Constructs a 3D tetrahedralisation object.

Usage

fm_mesh_3d(loc = NULL, tv = NULL, ...)

fm_delaunay_3d(loc, ...)

Arguments

loc

Input coordinates that should be part of the mesh. Can be a matrix, sf, sfc, SpatialPoints, or other object supported by fm_unify_coords().

tv

Tetrahedron indices, as a N-by-4 index vector into loc

...

Currently unused.

Value

An fm_mesh_3d object

Functions

  • fm_delaunay_3d(): Construct a plain Delaunay triangulation in 3D. Requires the geometry package.

Examples

(m <- fm_mesh_3d(
  matrix(c(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0), 4, 3, byrow = TRUE),
  matrix(c(1, 2, 3, 4), 1, 4, byrow = TRUE)
))

(m <- fm_delaunay_3d(matrix(rnorm(30), 10, 3)))

Compute an extension of a spatial object

Description

Constructs a potentially nonconvex extension of a spatial object by performing dilation by convex + concave followed by erosion by concave. This is equivalent to dilation by convex followed by closing (dilation + erosion) by concave.

Usage

fm_nonconvex_hull(x, ...)

## S3 method for class 'sfc'
fm_nonconvex_hull(
  x,
  convex = -0.15,
  concave = convex,
  preserveTopology = TRUE,
  dTolerance = NULL,
  crs = fm_crs(x),
  ...
)

fm_extensions(x, convex = -0.15, concave = convex, dTolerance = NULL, ...)

## S3 method for class 'matrix'
fm_nonconvex_hull(x, ...)

## S3 method for class 'sf'
fm_nonconvex_hull(x, ...)

## S3 method for class 'Spatial'
fm_nonconvex_hull(x, ...)

## S3 method for class 'sfg'
fm_nonconvex_hull(x, ...)

Arguments

x

A spatial object

...

Arguments passed on to the fm_nonconvex_hull() sub-methods

convex

numeric vector; How much to extend

concave

numeric vector; The minimum allowed reentrant curvature. Default equal to convex

preserveTopology

logical; argument to sf::st_simplify()

dTolerance

If not zero, controls the dTolerance argument to sf::st_simplify(). The default is pmin(convex, concave) / 40, chosen to give approximately 4 or more subsegments per circular quadrant.

crs

Options crs object for the resulting polygon

Details

Morphological dilation by convex, followed by closing by concave, with minimum concave curvature radius concave. If the dilated set has no gaps of width between

2convex(1+2concave/convex1)2 \textrm{convex} (\sqrt{1+2\textrm{concave}/\textrm{convex}} - 1)

and 2concave2\textrm{concave}, then the minimum convex curvature radius is convex.

The implementation is based on the identity

dilation(a)&closing(b)=dilation(a+b)&erosion(b)\textrm{dilation}(a) \& \textrm{closing}(b) = \textrm{dilation}(a+b) \& \textrm{erosion}(b)

where all operations are with respect to disks with the specified radii.

When convex, concave, or dTolerance are negative, fm_diameter * abs(...) is used instead.

Differs from sf::st_buffer(x, convex) followed by sf::st_concave_hull() (available from GEOS 3.11) in how the amount of allowed concavity is controlled.

Value

fm_nonconvex_hull() returns an extended object as an sfc polygon object (regardless of the x class).

fm_extensions() returns a list of sfc objects.

Functions

  • fm_nonconvex_hull(): Basic nonconvex hull method.

  • fm_extensions(): Constructs a potentially nonconvex extension of a spatial object by performing dilation by convex + concave followed by erosion by concave. This is equivalent to dilation by convex followed by closing (dilation + erosion) by concave.

INLA compatibility

For mesh and curve creation, the fm_rcdt_2d_inla(), fm_mesh_2d_inla(), and fm_nonconvex_hull_inla() methods will keep the interface syntax used by INLA::inla.mesh.create(), INLA::inla.mesh.2d(), and INLA::inla.nonconvex.hull() functions, respectively, whereas the fm_rcdt_2d(), fm_mesh_2d(), and fm_nonconvex_hull() interfaces may be different, and potentially change in the future.

References

Gonzalez and Woods (1992), Digital Image Processing

See Also

fm_nonconvex_hull_inla()

Examples

inp <- matrix(rnorm(20), 10, 2)
out <- fm_nonconvex_hull(inp, convex = 1)
plot(out)
points(inp, pch = 20)
if (TRUE) {
  inp <- sf::st_as_sf(as.data.frame(matrix(1:6, 3, 2)), coords = 1:2)
  bnd <- fm_extensions(inp, convex = c(0.75, 2))
  plot(fm_mesh_2d(boundary = bnd, max.edge = c(0.25, 1)), asp = 1)
}

Non-convex hull computation

Description

Legacy method for INLA::inla.nonconvex.hull()

Usage

fm_nonconvex_hull_inla(
  x,
  convex = -0.15,
  concave = convex,
  resolution = 40,
  eps = NULL,
  eps_rel = NULL,
  crs = NULL,
  ...
)

fm_nonconvex_hull_inla_basic(
  x,
  convex = -0.15,
  resolution = 40,
  eps = NULL,
  crs = NULL
)

Arguments

x

A spatial object

convex

numeric vector; How much to extend

concave

numeric vector; The minimum allowed reentrant curvature. Default equal to convex

resolution

The internal computation resolution. A warning will be issued when this needs to be increased for higher accuracy, with the required resolution stated.

eps, eps_rel

The polygonal curve simplification tolerances used for simplifying the resulting boundary curve. See fm_simplify_helper() for details.

crs

Options crs object for the resulting polygon

...

Unused.

Details

Requires splancs::nndistF()

Value

fm_nonconvex_hull_inla() returns an fm_segm object, for compatibility with inla.nonconvex.hull().

Functions

  • fm_nonconvex_hull_inla_basic(): Special method for convex = 0.

INLA compatibility

For mesh and curve creation, the fm_rcdt_2d_inla(), fm_mesh_2d_inla(), and fm_nonconvex_hull_inla() methods will keep the interface syntax used by INLA::inla.mesh.create(), INLA::inla.mesh.2d(), and INLA::inla.nonconvex.hull() functions, respectively, whereas the fm_rcdt_2d(), fm_mesh_2d(), and fm_nonconvex_hull() interfaces may be different, and potentially change in the future.

See Also

fm_nonconvex_hull()

Other nonconvex inla legacy support: fm_segm_contour_helper(), fm_simplify_helper()

Examples

fm_nonconvex_hull_inla(cbind(0, 0), convex = 1)

Generate lattice points covering a mesh

Description

Generate terra, sf, or sp lattice locations

Usage

fm_pixels(
  mesh,
  dims = c(150, 150),
  xlim = NULL,
  ylim = NULL,
  mask = TRUE,
  format = "sf",
  minimal = TRUE,
  nx = deprecated(),
  ny = deprecated()
)

Arguments

mesh

An fm_mesh_2d object

dims

A length 2 integer vector giving the dimensions of the target lattice.

xlim, ylim

Length 2 numeric vectors of x- and y- axis limits. Defaults taken from the range of the mesh or mask; see minimal.

mask

If logical and TRUE, remove pixels that are outside the mesh. If mask is an sf or Spatial object, only return pixels covered by this object.

format

character; "sf", "terra" or "sp"

minimal

logical; if TRUE (default), the default range is determined by the minimum of the ranges of the mesh and mask, otherwise only the mesh.

nx

[Deprecated] Number of pixels in x direction, or a numeric vector of x-values

ny

[Deprecated] Number of pixels in y direction, or a numeric vector of y-values

Value

sf, SpatRaster, or SpatialPixelsDataFrame covering the mesh or mask.

Author(s)

Finn Lindgren [email protected]

Examples

if (require("ggplot2", quietly = TRUE)) {
  dims <- c(50, 50)
  pxl <- fm_pixels(
    fmexample$mesh,
    dims = dims,
    mask = fmexample$boundary_sf[[1]],
    minimal = TRUE
  )
  pxl$val <- rnorm(NROW(pxl)) +
    fm_evaluate(fmexample$mesh, pxl, field = 2 * fmexample$mesh$loc[, 1])
  ggplot() +
    geom_tile(
      data = pxl,
      aes(geometry = geometry, fill = val),
      stat = "sf_coordinates"
    ) +
    geom_sf(data = fm_as_sfc(fmexample$mesh), alpha = 0.2)
}


if (require("ggplot2", quietly = TRUE) &&
  require("terra", quietly = TRUE) &&
  require("tidyterra", quietly = TRUE)) {
  pxl <- fm_pixels(fmexample$mesh,
    dims = c(50, 50), mask = fmexample$boundary_sf[[1]],
    format = "terra"
  )
  pxl$val <- rnorm(NROW(pxl) * NCOL(pxl))
  pxl <-
    terra::mask(
      pxl,
      mask = pxl$.mask,
      maskvalues = c(FALSE, NA),
      updatevalue = NA
    )
  ggplot() +
    geom_spatraster(data = pxl, aes(fill = val)) +
    geom_sf(data = fm_as_sfc(fmexample$mesh), alpha = 0.2)
}

Basis functions for mesh manifolds

Description

Calculate basis functions on fm_mesh_1d() or fm_mesh_2d(), without necessarily matching the default function space of the given mesh object.

Usage

fm_raw_basis(
  mesh,
  type = "b.spline",
  n = 3,
  degree = 2,
  knot.placement = "uniform.area",
  rot.inv = TRUE,
  boundary = "free",
  free.clamped = TRUE,
  ...
)

Arguments

mesh

An fm_mesh_1d() or fm_mesh_2d() object.

type

b.spline (default) for B-spline basis functions, sph.harm for spherical harmonics (available only for meshes on the sphere)

n

For B-splines, the number of basis functions in each direction (for 1d meshes n must be a scalar, and for planar 2d meshes a 2-vector). For spherical harmonics, n is the maximal harmonic order.

degree

Degree of B-spline polynomials. See fm_mesh_1d().

knot.placement

For B-splines on the sphere, controls the latitudinal placements of knots. "uniform.area" (default) gives uniform spacing in sin(latitude), "uniform.latitude" gives uniform spacing in latitudes.

rot.inv

For spherical harmonics on a sphere, rot.inv=TRUE gives the rotationally invariant subset of basis functions.

boundary

Boundary specification, default is free boundaries. See fm_mesh_1d() for more information.

free.clamped

If TRUE and boundary is "free", the boundary basis functions are clamped to 0/1 at the interval boundary by repeating the boundary knots. See fm_mesh_1d() for more information.

...

Unused

Value

A matrix with evaluated basis function

Author(s)

Finn Lindgren [email protected]

See Also

fm_mesh_1d(), fm_mesh_2d(), fm_basis()

Examples

loc <- rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 1))
mesh <- fm_mesh_2d(loc, max.edge = 0.15)
basis <- fm_raw_basis(mesh, n = c(4, 5))

proj <- fm_evaluator(mesh, dims = c(10, 10))
image(proj$x, proj$y, fm_evaluate(proj, basis[, 7]), asp = 1)

if (interactive() && require("rgl")) {
  plot_rgl(mesh, col = basis[, 7], draw.edges = FALSE, draw.vertices = FALSE)
}

Refined Constrained Delaunay Triangulation

Description

Computes a refined constrained Delaunay triangulation on R2 or S2.

Usage

fm_rcdt_2d(...)

fm_rcdt_2d_inla(
  loc = NULL,
  tv = NULL,
  boundary = NULL,
  interior = NULL,
  extend = (missing(tv) || is.null(tv)),
  refine = FALSE,
  lattice = NULL,
  globe = NULL,
  cutoff = 1e-12,
  quality.spec = NULL,
  crs = NULL,
  ...
)

fm_delaunay_2d(loc, crs = NULL, ...)

Arguments

...

Currently passed on to fm_mesh_2d_inla or converted to fmesher_rcdt() options.

loc

Input coordinates that should be part of the mesh. Can be a matrix, sf, sfc, SpatialPoints, or other object supported by fm_unify_coords().

tv

Initial triangulation, as a N-by-3 index vector into loc

boundary, interior

Objects supported by fm_as_segm(). If boundary is numeric, fm_nonconvex_hull(loc, convex = boundary) is used.

extend

logical or list specifying whether to extend the data region, with parameters

list("n")

the number of edges in the extended boundary (default=16)

list("offset")

the extension distance. If negative, interpreted as a factor relative to the approximate data diameter (default=-0.10)

Setting to FALSE is only useful in combination lattice or boundary.

refine

logical or list specifying whether to refine the triangulation, with parameters

list("min.angle")

the minimum allowed interior angle in any triangle. The algorithm is guaranteed to converge for min.angle at most 21 (default=21)

list("max.edge")

the maximum allowed edge length in any triangle. If negative, interpreted as a relative factor in an ad hoc formula depending on the data density (default=Inf)

list("max.n.strict")

the maximum number of vertices allowed, overriding min.angle and max.edge (default=-1, meaning no limit)

list("max.n")

the maximum number of vertices allowed, overriding max.edge only (default=-1, meaning no limit)

lattice

An fm_lattice_2d object, generated by fm_lattice_2d(), specifying points on a regular lattice.

globe

If non-NULL, an integer specifying the level of subdivision for global mesh points, used with fmesher_globe_points()

cutoff

The minimum allowed distance between points. Point at most as far apart as this are replaced by a single vertex prior to the mesh refinement step.

quality.spec

List of vectors of per vertex max.edge target specification for each location in loc, boundary/interior (segm), and lattice. Only used if refining the mesh.

crs

Optional crs object

Value

An fm_mesh_2d object

Functions

  • fm_rcdt_2d_inla(): Legacy method for the INLA::inla.mesh.create() interface

  • fm_delaunay_2d(): Construct a plain Delaunay triangulation.

INLA compatibility

For mesh and curve creation, the fm_rcdt_2d_inla(), fm_mesh_2d_inla(), and fm_nonconvex_hull_inla() methods will keep the interface syntax used by INLA::inla.mesh.create(), INLA::inla.mesh.2d(), and INLA::inla.nonconvex.hull() functions, respectively, whereas the fm_rcdt_2d(), fm_mesh_2d(), and fm_nonconvex_hull() interfaces may be different, and potentially change in the future.

Examples

(m <- fm_rcdt_2d_inla(
  boundary = fm_nonconvex_hull(cbind(0, 0), convex = 5)
))

fm_delaunay_2d(matrix(rnorm(30), 15, 2))

Row-wise Kronecker products

Description

Takes two Matrices and computes the row-wise Kronecker product. Optionally applies row-wise weights and/or applies an additional 0/1 row-wise Kronecker matrix product.

Usage

fm_row_kron(M1, M2, repl = NULL, n.repl = NULL, weights = NULL)

Arguments

M1

A matrix that can be transformed into a sparse Matrix.

M2

A matrix that can be transformed into a sparse Matrix.

repl

An optional index vector. For each entry, specifies which replicate the row belongs to, in the sense used in INLA::inla.spde.make.A

n.repl

The maximum replicate index, in the sense used in INLA::inla.spde.make.A().

weights

Optional scaling weights to be applied row-wise to the resulting matrix.

Value

A Matrix::sparseMatrix object.

Author(s)

Finn Lindgren [email protected]

Examples

fm_row_kron(rbind(c(1, 1, 0), c(0, 1, 1)), rbind(c(1, 2), c(3, 4)))

Make a spatial segment object

Description

Make a spatial segment object

Usage

fm_segm(...)

## Default S3 method:
fm_segm(loc = NULL, idx = NULL, grp = NULL, is.bnd = TRUE, crs = NULL, ...)

## S3 method for class 'fm_segm'
fm_segm(..., grp = NULL, grp.default = 0L, is.bnd = NULL)

## S3 method for class 'fm_segm_list'
fm_segm(x, grp = NULL, grp.default = 0L, ...)

fm_segm_join(x, grp = NULL, grp.default = 0L, is.bnd = NULL)

fm_segm_split(x, grp = NULL, grp.default = 0L)

## S3 method for class 'inla.mesh.segment'
fm_segm(..., grp.default = 0)

## S3 method for class 'fm_mesh_2d'
fm_segm(x, boundary = TRUE, grp = NULL, ...)

fm_is_bnd(x)

fm_is_bnd(x) <- value

Arguments

...

Passed on to submethods

loc

Matrix of point locations, or SpatialPoints, or sf/sfc point object.

idx

Segment index sequence vector or index pair matrix. The indices refer to the rows of loc. If loc==NULL, the indices will be interpreted as indices into the point specification supplied to fm_rcdt_2d(). If is.bnd==TRUE, defaults to linking all the points in loc, as c(1:nrow(loc),1L), otherwise 1:nrow(loc).

grp

When joining segments, use these group labels for segments instead of the original group labels.

is.bnd

TRUE if the segments are boundary segments, otherwise FALSE.

crs

An optional fm_crs(), sf::st_crs() or sp::CRS() object

grp.default

If grp.default is NULL, use these group labels for segments with NULL group.

x

Mesh to extract segments from

boundary

logical; if TRUE, extract the boundary segments, otherwise interior constrain segments.

value

logical

Value

An fm_segm or fm_segm_list object

Methods (by class)

  • fm_segm(fm_segm): Join multiple fm_segm objects into a single fm_segm object. If is.bnd is non-NULL, it overrides the input segment information. Otherwise, it checks if the inputs are consistent.

  • fm_segm(fm_segm_list): Join fm_segm objects from a fm_segm_list into a single fm_segm object. Equivalent to fm_segm_join(x)

  • fm_segm(fm_mesh_2d): Extract the boundary or interior segments of a 2d mesh. If grp is non-NULL, extracts only segments matching the matching the set of groups given by grp.

Functions

  • fm_segm(): Create a new fm_segm object.

  • fm_segm_join(): Join multiple fm_segm objects into a single fm_segm object. If is.bnd is non-NULL, it overrides the segment information. Otherwise it checks for consistency.

  • fm_segm_split(): Split an fm_segm object by grp into an fm_segm_list object, optionally keeping only some groups.

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_simplify(), fm_tensor()

Examples

fm_segm(rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 1)), is.bnd = FALSE)
fm_segm(rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 1)), is.bnd = TRUE)

fm_segm_join(fmexample$boundary_fm)

fm_segm(fmexample$mesh, boundary = TRUE)
fm_segm(fmexample$mesh, boundary = FALSE)

Methods for fm_segm lists

Description

fm_segm lists can be combined into fm_segm_list list objects.

Usage

## S3 method for class 'fm_segm'
c(...)

## S3 method for class 'fm_segm_list'
c(...)

## S3 method for class 'fm_segm_list'
x[i]

Arguments

...

Objects to be combined.

x

fm_segm_list object from which to extract element(s)

i

indices specifying elements to extract

Value

A fm_segm_list object

Methods (by generic)

  • c(fm_segm_list): The ... arguments should be coercible to fm_segm_list objects.

  • [: Extract sub-list

Functions

  • c(fm_segm): The ... arguments should be fm_segm objects, or coercible with fm_as_segm_list(list(...)).

See Also

fm_as_segm_list()

Examples

m <- c(A = fm_segm(1:2), B = fm_segm(3:4))
str(m)
str(m[2])

Recursive curve simplification.

Description

[Experimental] Simplifies polygonal curve segments by joining nearly co-linear segments.

Uses a variation of the binary splitting Ramer-Douglas-Peucker algorithm, with an ellipse of half-width eps ellipse instead of a rectangle, motivated by prediction ellipse for Brownian bridge.

Usage

fm_simplify(x, eps = NULL, eps_rel = NULL, ...)

Arguments

x

An fm_segm() object.

eps

Absolute straightness tolerance. Default NULL, no constraint.

eps_rel

Relative straightness tolerance. Default NULL, no constraint.

...

Currently unused.

Details

Variation of Ramer-Douglas-Peucker. Uses width epsilon ellipse instead of rectangle, motivated by prediction ellipse for Brownian bridge.

Value

The simplified fm_segm() object.

Author(s)

Finn Lindgren [email protected]

References

Ramer, Urs (1972). "An iterative procedure for the polygonal approximation of plane curves". Computer Graphics and Image Processing. 1 (3): 244–256. doi:10.1016/S0146-664X(72)80017-0

Douglas, David; Peucker, Thomas (1973). "Algorithms for the reduction of the number of points required to represent a digitized line or its caricature". The Canadian Cartographer. 10 (2): 112–122. doi:10.3138/FM57-6770-U75U-7727

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_tensor()

Examples

theta <- seq(0, 2 * pi, length.out = 1000)
(segm <- fm_segm(cbind(cos(theta), sin(theta)),
  idx = seq_along(theta)
))
(segm1 <- fm_simplify(segm, eps_rel = 0.1))
(segm2 <- fm_simplify(segm, eps_rel = 0.2))
plot(segm)
lines(segm1, col = 2)
lines(segm2, col = 3)

(segm <- fm_segm(cbind(theta, sin(theta * 4)),
  idx = seq_along(theta)
))
(segm1 <- fm_simplify(segm, eps_rel = 0.1))
(segm2 <- fm_simplify(segm, eps_rel = 0.2))
plot(segm)
lines(segm1, col = 2)
lines(segm2, col = 3)

Split lines at triangle edges

Description

Compute intersections between line segments and triangle edges, and filter out segment of length zero.

Usage

fm_split_lines(mesh, ...)

## S3 method for class 'fm_mesh_2d'
fm_split_lines(mesh, segm, ...)

Arguments

mesh

An fm_mesh_2d object

...

Unused.

segm

An fm_segm() object with segments to be split

Value

An fm_segm() object with the same crs as the mesh, with an added field origin, that for each new segment gives the originator index into to original segm object for each new line segment.

Author(s)

Finn Lindgren [email protected]

Examples

mesh <- fm_mesh_2d(
  boundary = fm_segm(
    rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 1)),
    is.bnd = TRUE
  )
)
splitter <- fm_segm(rbind(c(0.8, 0.2), c(0.2, 0.8)))
segm_split <- fm_split_lines(mesh, splitter)

plot(mesh)
lines(splitter)
points(segm_split$loc)

Split triangles of a mesh into subtriangles

Description

[Experimental] Splits each mesh triangle into (n + 1)^2 subtriangles. The current version drops any edge constraint information from the mesh.

Usage

fm_subdivide(mesh, n = 1)

Arguments

mesh

an fm_mesh_2d object

n

number of added points along each edge. Default is 1.

Value

A refined fm_mesh_2d object

Author(s)

Finn Lindgren [email protected]

Examples

mesh <- fm_rcdt_2d_inla(
  loc = rbind(c(0, 0), c(1, 0), c(0, 1)),
  tv = rbind(c(1, 2, 3))
)
mesh_sub <- fm_subdivide(mesh, 3)
mesh
mesh_sub

plot(mesh_sub, edge.color = 2)

plot(fm_subdivide(fmexample$mesh, 3), edge.color = 2)
plot(fmexample$mesh, add = TRUE, edge.color = 1)

Make a tensor product function space

Description

[Experimental] Tensor product function spaces. The interface and object storage model is experimental and may change.

Usage

fm_tensor(x, ...)

Arguments

x

list of function space objects, such as fm_mesh_2d().

...

Currently unused

Value

A fm_tensor or fm_tensor_list object. Elements of fm_tensor:

fun_spaces

fm_list of function space objects

manifold

character; manifold type summary. Regular subset of Rd "Rd", if all function spaces have type "R", torus connected "Td" if all function spaces have type "S", and otherwise "Md" In all cases, d is the sum of the manifold dimensions of the function spaces.

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(), fm_simplify()

Examples

m <- fm_tensor(list(
  space = fmexample$mesh,
  time = fm_mesh_1d(1:5)
))
m2 <- fm_as_tensor(m)
m3 <- fm_as_tensor_list(list(m, m))
c(fm_dof(m$fun_spaces$space) * fm_dof(m$fun_spaces$time), fm_dof(m))
str(fm_evaluator(m, loc = list(space = cbind(0, 0), time = 2.5)))
str(fm_basis(m, loc = list(space = cbind(0, 0), time = 2.5)))
str(fm_fem(m))

Object coordinate transformation

Description

Handle transformation of various inla objects according to coordinate reference systems of crs (from sf::st_crs()), fm_crs, sp::CRS, fm_CRS, or INLA::inla.CRS class.

Usage

fm_transform(x, crs, ...)

## Default S3 method:
fm_transform(x, crs, ..., crs0 = NULL)

## S3 method for class 'NULL'
fm_transform(x, crs, ...)

## S3 method for class 'matrix'
fm_transform(x, crs, ..., passthrough = FALSE, crs0 = NULL)

## S3 method for class 'sf'
fm_transform(x, crs, ..., passthrough = FALSE)

## S3 method for class 'sfc'
fm_transform(x, crs, ..., passthrough = FALSE)

## S3 method for class 'sfg'
fm_transform(x, crs, ..., passthrough = FALSE)

## S3 method for class 'Spatial'
fm_transform(x, crs, ..., passthrough = FALSE)

## S3 method for class 'fm_mesh_2d'
fm_transform(x, crs = fm_crs(x), ..., passthrough = FALSE, crs0 = fm_crs(x))

## S3 method for class 'fm_lattice_2d'
fm_transform(x, crs = fm_crs(x), ..., passthrough = FALSE, crs0 = fm_crs(x))

## S3 method for class 'fm_segm'
fm_transform(x, crs = fm_crs(x), ..., passthrough = FALSE, crs0 = fm_crs(x))

## S3 method for class 'fm_list'
fm_transform(x, crs, ...)

Arguments

x

The object that should be transformed from it's current CRS to a new CRS

crs

The target crs object

...

Potential additional arguments

crs0

The source crs object for spatial classes without crs information

passthrough

Default is FALSE. Setting to TRUE allows objects with no CRS information to be passed through without transformation. Use with care!

Value

A transformed object, normally of the same class as the input object.

See Also

fm_CRS()

Examples

fm_transform(
  rbind(c(0, 0), c(0, 90), c(0, 91)),
  crs = fm_crs("sphere"),
  crs0 = fm_crs("longlat_norm")
)

Extract vertex locations from an fm_mesh_2d

Description

Extracts the vertices of an fm_mesh_2d object.

Usage

fm_vertices(x, format = NULL)

Arguments

x

An fm_mesh_2d object.

format

character; "sf", "df", "sp"

Value

An sf, data.frame, or SpatialPointsDataFrame object, with the vertex coordinates, and a .vertex column with the vertex indices.

Author(s)

Finn Lindgren [email protected]

See Also

fm_centroids()

Examples

if (require("ggplot2", quietly = TRUE)) {
  vrt <- fm_vertices(fmexample$mesh, format = "sf")
  ggplot() +
    geom_sf(data = fm_as_sfc(fmexample$mesh)) +
    geom_sf(data = vrt, color = "red")
}

Barycentric coordinate computation

Description

Locate points and compute triangular barycentric coordinates

Usage

fmesher_bary(mesh_loc, mesh_tv, loc, options)

Arguments

mesh_loc

numeric matrix; mesh vertex coordinates

mesh_tv

3-column integer matrix with 0-based vertex indices for each triangle

loc

numeric matrix; coordinates of points to locate in the mesh

options

list of triangulation options

Value

A list with vector index (triangle index) and matrix where (3-column barycentric matrix)

Examples

m <- fmesher_rcdt(list(cet_margin = 1), matrix(0, 1, 2))
b <- fmesher_bary(m$s,
                  m$tv,
                  matrix(c(0.5, 0.5), 1, 2),
                  list())

Barycentric coordinate computation

Description

Locate points and compute triangular barycentric coordinates

Usage

fmesher_bary3d(mesh_loc, mesh_tv, loc, options)

Arguments

mesh_loc

numeric matrix; mesh vertex coordinates

mesh_tv

3-column integer matrix with 0-based vertex indices for each triangle

loc

numeric matrix; coordinates of points to locate in the mesh

options

list of triangulation options

Value

A list with vector index (tetra index) and matrix where (4-column barycentric matrix)

Examples

m <- fmesher_mesh3d(list(cet_margin = 1),
                    matrix(rnorm(15), 5, 3),
                    matrix(c(0,1,2,3), 1, 4))
b <- fmesher_bary3d(m$loc,
                    m$tv,
                    matrix(c(0.5, 0.5, 0.5), 1, 3),
                    list())

Finite element matrix computation

Description

Construct finite element structure matrices

Usage

fmesher_fem(mesh_loc, mesh_tv, fem_order_max, aniso, options)

Arguments

mesh_loc

numeric matrix; mesh vertex coordinates

mesh_tv

3-column integer matrix with 0-based vertex indices for each triangle

fem_order_max

integer; the highest operator order to compute

aniso

If non-NULL, a list(gamma, v). Calculates anisotropic structure matrices (in addition to the regular) for γ\gamma and vv for an anisotropic operator H\nabla\cdot H \nabla, where H=γI+vvH=\gamma I + v v^\top. Currently (2023-08-05) the fields need to be given per vertex.

options

list of triangulation options (sphere_tolerance)

Value

A list of matrices

Examples

m <- fmesher_rcdt(list(cet_margin = 1), matrix(0, 1, 2))
b <- fmesher_fem(m$s, m$tv, fem_order_max = 2, aniso = NULL, options = list())

Globe points

Description

Create points on a globe

Usage

fmesher_globe_points(globe)

Arguments

globe

integer; the number of edge subdivision segments, 1 or higher.

Value

A matrix of points on a unit radius globe

Examples

fmesher_globe_points(1)

3D tetrahedralisation storage

Description

(...)

Usage

fmesher_mesh3d(options, loc, tv)

Arguments

options

list of triangulation options

loc

numeric matrix; initial points to include

tv

4-column integer matrix with 0-based vertex indices for each triangle

Value

A list of information objects for a generated tetrahedralisation

Examples

m <- fmesher_mesh3d(list(),
                    matrix(c(1,0,0,0,1,0,0,0,1,0,0,0), 4, 3, byrow=TRUE),
                    matrix(c(0,1,2,3), 1, 4, byrow=TRUE))

Refined Constrained Delaunay Triangulation

Description

(...)

Usage

fmesher_rcdt(
  options,
  loc,
  tv = NULL,
  boundary = NULL,
  interior = NULL,
  boundary_grp = NULL,
  interior_grp = NULL
)

Arguments

options

list of triangulation options

loc

numeric matrix; initial points to include

tv

3-column integer matrix with 0-based vertex indices for each triangle

boundary

2-column integer matrix with 0-based vertex indices for each boundary edge constraint

interior

2-column integer matrix with 0-based vertex indices for each interior edge constraint

boundary_grp

integer vector with group labels

interior_grp

integer vector with group labels

Value

A list of information objects for a generated triangulation

Examples

m <- fmesher_rcdt(list(cet_margin = 1), matrix(0, 1, 2))

Split lines at triangle edges

Description

Split a sequence of line segments at triangle edges

Usage

fmesher_split_lines(mesh_loc, mesh_tv, loc, idx, options)

Arguments

mesh_loc

numeric matrix; mesh vertex coordinates

mesh_tv

3-column integer matrix with 0-based vertex indices for each triangle

loc

numeric coordinate matrix

idx

2-column integer matrix

options

list of triangulation options (sphere_tolerance)

Value

A list of line splitting information objects

See Also

fm_split_lines()

Examples

mesh <- fm_mesh_2d(
  boundary = fm_segm(rbind(c(0,0), c(1,0), c(1,1), c(0, 1)), is.bnd = TRUE)
)
splitter <- fm_segm(rbind(c(0.8, 0.2), c(0.2, 0.8)))
segm_split <- fm_split_lines(mesh, splitter)

Deprecated functions in fmesher

Description

These functions still attempt to do their job, but will be removed in a future version.

Usage

fm_spTransform(x, ...)

## Default S3 method:
fm_spTransform(x, crs0 = NULL, crs1 = NULL, passthrough = FALSE, ...)

## S3 method for class 'SpatialPoints'
fm_spTransform(x, CRSobj, passthrough = FALSE, ...)

## S3 method for class 'SpatialPointsDataFrame'
fm_spTransform(x, CRSobj, passthrough = FALSE, ...)

fm_has_PROJ6()

fm_as_sp_crs(x, ...)

fm_sp_get_crs(x)

fm_sp2segment(...)

Arguments

x

A sp::Spatial object

...

Potential additional arguments

crs0

The source sp::CRS or inla.CRS object

crs1

The target sp::CRS or inla.CRS object

passthrough

Default is FALSE. Setting to TRUE allows objects with no CRS information to be passed through without transformation.

CRSobj

The target sp::CRS or inla.CRS object

Details

This function is a convenience method to workaround PROJ4/PROJ6 differences, and the lack of a crs extraction method for Spatial objects. For newer code, use fm_crs() instead, that returns crs objects, and use fm_CRS() to extract/construct/convert to old style sp::CRS objects.

Value

A CRS object, or NULL if no valid CRS identified

Functions

  • fm_spTransform(): [Deprecated] (See fm_transform() instead) Handle transformation of various inla objects according to coordinate reference systems of sp::CRS or INLA::inla.CRS class.

  • fm_spTransform(default): The default method handles low level transformation of raw coordinates.

  • fm_has_PROJ6(): Old checker for PROJ6.

  • fm_as_sp_crs(): Wrapper for fm_CRS() sp::Spatial and sp::CRS objects.

  • fm_sp_get_crs(): Wrapper for CRS(projargs) (PROJ4) and CRS(wkt) for sp::Spatial objects.

  • fm_sp2segment(): [Deprecated] in favour of fm_as_segm()

Author(s)

Finn Lindgren [email protected]

See Also

fm_transform()

Examples

if (fm_safe_sp()) {
  s <- sp::SpatialPoints(matrix(1:6, 3, 2), proj4string = fm_CRS("sphere"))
  fm_CRS(s)
}

Print objects

Description

Print objects

Usage

## S3 method for class 'fm_segm'
print(x, ..., digits = NULL, verbose = TRUE, newline = TRUE)

## S3 method for class 'fm_segm_list'
print(x, ..., digits = NULL, verbose = FALSE, newline = TRUE)

## S3 method for class 'fm_mesh_2d'
print(x, ..., digits = NULL, verbose = FALSE)

## S3 method for class 'fm_mesh_3d'
print(x, ..., digits = NULL, verbose = FALSE)

## S3 method for class 'fm_mesh_1d'
print(x, ..., digits = NULL, verbose = FALSE)

## S3 method for class 'fm_bbox'
print(x, ..., digits = NULL, verbose = TRUE, newline = TRUE)

## S3 method for class 'fm_tensor'
print(x, ..., digits = NULL, verbose = FALSE)

## S3 method for class 'fm_crs'
print(x, ...)

## S3 method for class 'fm_CRS'
print(x, ...)

Arguments

x

an object used to select a method.

...

further arguments passed to or from other methods.

digits

a positive integer indicating how many significant digits are to be used for numeric and complex x. The default, NULL, uses getOption("digits").

verbose

logical

newline

logical; if TRUE (default), end the printing with ⁠\n⁠

Value

The input object x

Examples

fm_bbox(matrix(1:6, 3, 2))
print(fm_bbox(matrix(1:6, 3, 2)), verbose = FALSE)

print(fmexample$mesh)
print(fmexample$boundary_fm)

print(fm_mesh_1d(c(1, 2, 3, 5, 7), degree = 2))

Example mesh data

Description

This is an example data set used for fmesher package examples.

Usage

fmexample

Format

The data is a list containing these elements:

loc:

A matrix of points.

loc_sf:

An sfc version of loc.

boundary_fm:

A fm_segm_list of two fm_segm objects used in the mesh construction.

boundary_sf:

An sfc list version of boundary.

mesh:

An fm_mesh_2d() object.

Source

Generated by data-raw/fmexample.R.

See Also

fmexample_sp()

Examples

if (require(ggplot2, quietly = TRUE)) {
  ggplot() +
    geom_sf(data = fm_as_sfc(fmexample$mesh)) +
    geom_sf(data = fmexample$boundary_sf[[1]], fill = "red", alpha = 0.5)
}

Add sp data to fmexample

Description

Adds loc_sp and boundary_sp to fmexample for use in sp related code examples and tests.

Usage

fmexample_sp()

Value

Returns a copy of fmexample with loc_sp (SpatialPoints) and boundary_sp (SpatialPolygons) added.

Examples

if (fm_safe_sp()) {
  fmexample_sp()
}

ggplot2 geomes for fmesher related objects

Description

[Experimental]

geom_fm is a generic function for generating geomes from various kinds of fmesher objects, e.g. fm_segm and fm_mesh_2d. The function invokes particular methods which depend on the class of the data argument. Requires the ggplot2 package.

Note: geom_fm is not yet a "proper" ggplot2 geom method; the interface may therefore change in the future.

Usage

geom_fm(mapping = NULL, data = NULL, ...)

## S3 method for class 'fm_mesh_2d'
geom_fm(
  mapping = NULL,
  data = NULL,
  ...,
  mappings = NULL,
  defs = NULL,
  crs = NULL,
  mapping_int = deprecated(),
  mapping_bnd = deprecated(),
  defs_int = deprecated(),
  defs_bnd = deprecated()
)

## S3 method for class 'fm_segm'
geom_fm(mapping = NULL, data = NULL, ..., crs = NULL)

## S3 method for class 'fm_mesh_1d'
geom_fm(
  mapping = NULL,
  data = NULL,
  ...,
  xlim = NULL,
  basis = TRUE,
  knots = TRUE,
  derivatives = FALSE,
  weights = NULL
)

Arguments

mapping

an object for which to generate a geom.

data

an object for which to generate a geom.

...

Arguments passed on to the geom method.

mappings

optional list of aes mappings for the non-triangle parts of the mesh, named "int" for interior constraint edges, "bnd" for boundary edges, and "loc" for the vertices.

defs

optional list of non-aes settings for the non-triangle parts of the mesh, named "int" for interior constraint edges, "bnd" for boundary edges, and "loc" for the vertices.

crs

Optional crs to transform the object to before plotting.

mapping_int, mapping_bnd, defs_int, defs_bnd

[Deprecated] arguments; see mappings and defs.

xlim

numeric 2-vector; specifies the interval for which to compute functions. Default is data$interval

basis

logical; if TRUE (default), show the spline basis functions

knots

logical; if TRUE (default), show the spline knot locations

derivatives

logical; if TRUE (not default), draw first order derivatives instead of function values

weights

numeric vector; if provided, draw weighted basis functions and the resulting weighted sum.

Value

A combination of ggplot2 geoms.

Methods (by class)

  • geom_fm(fm_mesh_2d): Converts an fm_mesh_2d() object to sf with fm_as_sfc() and uses geom_sf to visualize the triangles and edges.

    The mesh vertices are only plotted if mappings$loc or defs$loc is non-NULL, e.g. defs = list(loc = list()). Default argument settings:

    ... = linewidth = 0.25, color = "grey" # default for triangle mapping
    defs = list(
      int = list(linewidth = 0.5, color = "blue"),
      bnd = list(linewidth = 1, color = "black"),
      loc = list(size = 1, color = "red")
    )
    
  • geom_fm(fm_segm): Converts an fm_segm() object to sf with fm_as_sfc() and uses geom_sf to visualize it.

  • geom_fm(fm_mesh_1d): Evaluates and plots the basis functions defined by an fm_mesh_1d() object.

Examples

ggplot() +
  geom_fm(data = fmexample$mesh)


m <- fm_mesh_2d(
  cbind(10, 20),
  boundary = fm_extensions(cbind(10, 20), c(25, 65)),
  max.edge = c(4, 10),
  crs = fm_crs("+proj=longlat")
)
ggplot() +
  geom_fm(data = m)
ggplot() +
  geom_fm(data = m, defs = list(loc = list()))
ggplot() +
  geom_fm(data = m, crs = fm_crs("epsg:27700"))

# Compute a mesh vertex based function on a different grid
px <- fm_pixels(fm_transform(m, fm_crs("mollweide_globe")))
px$fun <- fm_evaluate(m,
  loc = px,
  field = sin(m$loc[, 1] / 5) * sin(m$loc[, 2] / 5)
)
ggplot() +
  geom_tile(aes(geometry = geometry, fill = fun),
    data = px,
    stat = "sf_coordinates"
  ) +
  geom_fm(
    data = m, alpha = 0.2, linewidth = 0.05,
    crs = fm_crs("mollweide_globe")
  )



m <- fm_mesh_1d(c(1, 2, 4, 6, 10), boundary = c("n", "d"), degree = 2)
ggplot() +
  geom_fm(data = m, weights = c(4, 2, 4, -1))


m <- fm_mesh_1d(
  c(1, 2, 3, 5, 7),
  boundary = c("dirichlet", "neumann"),
  degree = 2
)
ggplot() +
  geom_fm(data = m)

Low level triangulation mesh plotting

Description

Plots a triangulation mesh using rgl.

Usage

plot_rgl(x, ...)

lines_rgl(x, ..., add = TRUE)

## S3 method for class 'fm_segm'
lines_rgl(
  x,
  loc = NULL,
  col = NULL,
  colors = c("black", "blue", "red", "green"),
  ...,
  add = TRUE
)

## S3 method for class 'fm_mesh_2d'
plot_rgl(
  x,
  col = "white",
  color.axis = NULL,
  color.n = 512,
  color.palette = cm.colors,
  color.truncate = FALSE,
  alpha = NULL,
  lwd = 1,
  specular = "black",
  draw.vertices = TRUE,
  draw.edges = TRUE,
  draw.faces = TRUE,
  draw.segments = draw.edges,
  size = 2,
  edge.color = rgb(0.3, 0.3, 0.3),
  t.sub = seq_len(nrow(x$graph$tv)),
  visibility = "",
  S = deprecated(),
  add = FALSE,
  ...
)

## S3 method for class 'fm_segm'
plot_rgl(x, ..., add = FALSE)

## S3 method for class 'fm_segm_list'
plot_rgl(x, ...)

## S3 method for class 'fm_segm_list'
lines_rgl(x, ...)

Arguments

x

A fm_mesh_2d() object

...

Additional parameters passed to and from other methods.

add

If TRUE, adds to the current plot instead of starting a new one.

loc

Point locations to be used if x$loc is NULL.

col

Segment color specification.

colors

Colors to cycle through if col is NULL.

color.axis

The min/max limit values for the color mapping.

color.n

The number of colors to use in the color palette.

color.palette

A color palette function.

color.truncate

If TRUE, truncate the colors at the color axis limits.

alpha

Transparency/opaqueness values. See rgl.material.

lwd

Line width for edges. See rgl.material.

specular

Specular color. See rgl.material.

draw.vertices

If TRUE, draw triangle vertices.

draw.edges

If TRUE, draw triangle edges.

draw.faces

If TRUE, draw triangles.

draw.segments

If TRUE, draw boundary and interior constraint edges more prominently.

size

Size for vertex points.

edge.color

Edge color specification.

t.sub

Optional triangle index subset to be drawn.

visibility

If "front" only display mesh faces with normal pointing towards the camera.

S

Deprecated.

Value

An rgl device identifier, invisibly.

Author(s)

Finn Lindgren [email protected]

See Also

plot.fm_mesh_2d()

Examples

if (interactive() && require("rgl")) {
  mesh <- fm_rcdt_2d(globe = 10)
  plot_rgl(mesh, col = mesh$loc[, 1])
}

Draw a triangulation mesh object

Description

Plots an fm_mesh_2d() object using standard graphics.

Usage

## S3 method for class 'fm_mesh_2d'
lines(x, ..., add = TRUE)

## S3 method for class 'fm_mesh_2d'
plot(
  x,
  col = "white",
  t.sub = seq_len(nrow(x$graph$tv)),
  add = FALSE,
  lwd = 1,
  xlim = range(x$loc[, 1]),
  ylim = range(x$loc[, 2]),
  main = NULL,
  size = 1,
  draw.vertices = FALSE,
  vertex.color = "black",
  draw.edges = TRUE,
  edge.color = rgb(0.3, 0.3, 0.3),
  draw.segments = draw.edges,
  rgl = deprecated(),
  visibility = "front",
  asp = 1,
  axes = FALSE,
  xlab = "",
  ylab = "",
  ...
)

Arguments

x

An fm_mesh_2d() object.

...

Further graphics parameters, interpreted by the respective plotting systems.

add

If TRUE, adds to the current plot instead of starting a new one.

col

Color specification. A single named color, a vector of scalar values, or a matrix of RGB values. Requires rgl=TRUE.

t.sub

Optional triangle index subset to be drawn.

lwd

Line width for triangle edges.

xlim

X-axis limits.

ylim

Y-axis limits.

main

Deprecated.

size

argument cex for vertex points.

draw.vertices

If TRUE, draw triangle vertices.

vertex.color

Color specification for all vertices.

draw.edges

If TRUE, draw triangle edges.

edge.color

Color specification for all edges.

draw.segments

If TRUE, draw boundary and interior constraint edges more prominently.

rgl

Deprecated

visibility

If "front" only display mesh faces with normal pointing towards the camera.

asp

Aspect ratio for new plots. Default 1.

axes

logical; whether axes should be drawn on the plot. Default FALSE.

xlab, ylab

character; labels for the axes.

Value

None

Author(s)

Finn Lindgren [email protected]

See Also

plot.fm_segm(), plot_rgl.fm_mesh_2d()

Examples

mesh <- fm_rcdt_2d(globe = 10)
plot(mesh)

mesh <- fm_mesh_2d(cbind(0, 1), offset = c(1, 1.5), max.edge = 0.5)
plot(mesh)

Draw fm_segm objects.

Description

Draws a fm_segm() object with generic or rgl graphics.

Usage

## S3 method for class 'fm_segm'
plot(x, ..., add = FALSE)

## S3 method for class 'fm_segm'
lines(
  x,
  loc = NULL,
  col = NULL,
  colors = c("black", "blue", "red", "green"),
  add = TRUE,
  xlim = NULL,
  ylim = NULL,
  rgl = FALSE,
  asp = 1,
  axes = FALSE,
  xlab = "",
  ylab = "",
  visibility = "front",
  ...
)

## S3 method for class 'fm_segm_list'
plot(x, ...)

## S3 method for class 'fm_segm_list'
lines(x, ...)

Arguments

x

An fm_segm() object.

...

Additional parameters, passed on to graphics methods.

add

If TRUE, add to the current plot, otherwise start a new plot.

loc

Point locations to be used if x$loc is NULL.

col

Segment color specification.

colors

Colors to cycle through if col is NULL.

xlim, ylim

X and Y axis limits for a new plot.

rgl

If TRUE, use rgl for plotting.

asp

Aspect ratio for new plots. Default 1.

axes

logical; whether axes should be drawn on the plot. Default FALSE.

xlab, ylab

character; labels for the axes.

visibility

If "front" only display mesh faces with normal pointing towards the camera.

Value

None

Author(s)

Finn Lindgren [email protected]

See Also

fm_segm(), plot.fm_mesh_2d

Examples

plot(fm_segm(fmexample$mesh, boundary = TRUE))
lines(fm_segm(fmexample$mesh, boundary = FALSE), col = 2)

Print method for fm_basis

Description

Prints information for an fm_basis object.

Usage

## S3 method for class 'fm_basis'
print(x, ..., prefix = "")

Arguments

x

fm_basis() object

...

Unused

prefix

a prefix to be used for each line. Default is an empty string.

Value

invisible(x)

See Also

fm_basis()

Examples

print(fm_basis(fmexample$mesh, fmexample$loc, full = TRUE))

Print method for fm_evaluator()

Description

Prints information for an fm_evaluator object.

Usage

## S3 method for class 'fm_evaluator'
print(x, ...)

Arguments

x

fm_evaluator() object

...

Unused

Value

invisible(x)

See Also

fm_evaluator()

Examples

print(fm_evaluator(fmexample$mesh, fmexample$loc))